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Paradigms with conflicting data patterns can be difficult to learn, resulting in acquisition
error. In this dissertation, I look at how paradigms are reanalyzed over time to gain
insight into the factors that influence morphophonological learning. Existing models of
morphophonology (e.g. Hare & Elman 1995; Albright 2002b,a, 2010) predict reanalysis
to be frequency-matching, occurring in a way that matches probabilistic distributions
within the paradigm. I propose that in fact, reanalysis responds to two factors: both
frequency-matching and a bias towards less marked outputs. Additionally, markedness
effects in reanalysis are argued to be restricted to so-called ‘active’ markedness effects,

which are already present in the language as stem phonotactics.

I present three case studies, all from Austronesian languages, where reanalysis is ar-
guably sensitive to a markedness bias, and confirm this by implementing a quantitative
model of reanalysis. This model, outlined in Chapter 2, simulates the cumulative effect
of reanalyses over time with an iterated learning paradigm. In each iteration, learning is
modeled using Maximum Entropy Harmonic Grammar (MaxEnt; Smolensky 1986; Gold-
water & Johnson 2003), with a markedness bias implemented as a Gaussian prior (Wilson

2006).
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The three studies are presented in Chapters 3-5. All three cases involve paradigms
where there is ambiguity in how the suffixed forms will surface, resulting in reanalysis
of these suffixed forms. The first case study concerns Malagasy weak stems; frequency-
matching models predict reanalysis towards one alternant, but instead there has been
reanalysis towards another statistically dispreferred alternant. I argue that this outcome
is motivated by avoidance of intervocalic stops, and show that this analysis does better

than alternative explanations.

The second and third case studies concern Samoan and Maori. In both languages,
certain suffixes have multiple allomorphs with an unpredictable distribution. In Samoan
(Chapter 4), reanalysis is generally towards the suffix allomorph predicted by frequency-
matching models, but is also modulated by OCP-place effects (McCarthy 1988, 1994).
Specifically, suffixed forms which violate OCP-place are more likely to be reanalyzed.
In Maori, reanalysis is towards a suffix allomorph that is not predicted by frequency-
matching models. I argue that reanalysis has instead been motivated by avoidance of

both vowel hiatus and heavy syllables .

All three languages show evidence of reanalysis that is sensitive to a markedness bias.
Moreover, all three cases are also consistent with the principle of active markedness, as
the markedness effects found in reanalysis are already present in the language-specific
phonotactics. Based on these results, I argue for a richer model of reanalysis in which

phonotactic principles serve as a learning bias.
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CHAPTER 1

Introduction

Recent developments in phonology show that people can learn fine-grained, probabilistic
generalizations about their language (e.g. Bybee & Moder 1983; Prasada & Pinker 1993;
Albright & Hayes 2003). A central debate in research on phonological learning concerns
how this type of statistical learning interacts with other language-specific learning biases.
One view holds that phonological learning can be explained by a domain-general ability
for statistical learning. In fact, statistical learning has a lot of explanatory power and
is often sufficient to explain speakers’ phonological intuitions (Section 1.1.1). On the
other hand, there is also growing evidence that learning can be constrained by various
synchronic learning biases (analytic biases; Moreton 2008). Such biases are argued to be
specific to the language faculty, or at least grounded in human cognitive mechanisms,

and therefore reflect principles of Universal Grammar (UG).

In recent years, extensive experimental work has been done to tease apart the effects
of statistical learning and competing biases, including studies of child language acqui-
sition and adult nonce-word experiments (i.e. wug tests). Since Kiparsky (1965, 1997,
1978, et seq.), it has also been recognized that language change serves as a robust “natu-
ral laboratory” for understanding how children learn and mislearn patterns outside the

constraints of a laboratory setting.

In this dissertation, I adopt the latter approach and probe into how statistical learning
interacts with learning biases by looking at a type of language change called reanalysis,
where morphophonological paradigms are remade over time. Existing models of reanal-

ysis (and more generally of morphophonological learning) predict that learners rely only



on statistical regularities within a paradigm. As a preview of the results, I find that reanal-
ysis in three languages—Malagasy, Samoan, and Maori—cannot be explained entirely by
this type of local statistical learning, and is also sensitive to markedness effects external
to the paradigm. I also argue for a restricted view of markedness bias, where markedness

effects present in reanalysis must already be active in the stem phonotactics of a language.

1.1 Frequency-matching vs. learning biases

1.1.1 Frequency-matching

In phonological learning, speakers are known to use statistical properties of the input
data to make predictive generalizations. In particular, when speakers are faced with
variable patterns in a morphophonological paradigm, they frequency-match, applying
these patterns in a way that matches the proportion at which they occur in the data. For
example, Ernestus & Baayen (2003) study Dutch final devoicing, where final obstruents

are devoiced, results in voicing alternations such as in (1).

(1)  Dutch voicing alternations
[ver'veit] [ver'veiden] ‘widen’ (t~d)
[ver'veit] [ver'veiten] ‘reproach’ (non-alternating)

When we look at the Dutch lexicon, rates of voicing alternation are partially pre-
dictable from statistical tendencies. For example, final [p] is non-alternating around 90%
of the time in the lexicon. Conversely, final [f] alternates with [v] around 70% of the
time. Ernestus & Baayen (2003) find that when speakers are told to provide the suffixed
form of wug stems, they apply voicing alternations in a way that aggregately matches

these distributional patterns.

Frequency-matching has been found to predict adult linguistic behavior in various

other experiments, including: Eddington (1996, 1998, 2004); Coleman & Pierrehum-



bert (1997); Berkley (2000b); Zuraw (2000); Bailey & Hahn (2001); Frisch & Zawaydeh
(2001); Albright (2002b); Albright & Hayes (2003); Hayes & Londe (2006); Hayes et al.
(2009); Pierrehumbert (2006); Jun & Lee (2007). Sociolinguistic studies also demonstrate
that children frequency-match adult speech patterns (Labov 1994, Ch. 20).

Note that while there is extensive evidence for frequency-matching in adults, there is
also evidence that children over-regularize patterns instead of frequency-matching (Hud-
son Kam & Newport 2005, 2009; Schumacher & Pierrehumbert 2021). Experimental
evidence shows that when learners overgeneralize, they tend to do so towards the more
frequent pattern, but sometimes also converge towards the minority pattern (Schumacher

& Pierrehumbert 2021).

Why might both frequency-matching and overregularization be observed? One pos-
sible explanation is that the choice between the two depends on input size (or, the size
of the learner’s lexicon). That is, when given very little evidence for a pattern, learners
initially overregularize gradient patterns. As they receive more input, they become bet-
ter at frequency matching. Various studies have found empirical support for this learning

trajectory (e.g. Levelt et al. 2000; Gnanadesikan 2004; Jarosz 2010).

Notably, frequency-matching predicts change to be preservatory (i.e. maintaining the
statistical distributions of the input), while overregularization predicts reanalysis towards
the more frequent variant. However, where reanalysis is not predicted by statistical dis-
tributions within a paradigm, neither approach can provide a complete picture of the

factors driving reanalysis.

1.1.2 Learning biases

In many cases, such as with the Dutch voicing alternations discussed above, frequency-
matching (and more generally statistical learning) is sufficient to explain speakers’ phono-
logical intuitions. On the other hand, there is growing evidence that learning is also con-

strained by various learning biases. Evidence for bias comes from cases where speakers



fail to frequency-match, and instead over-learn patterns (reflecting a bias for the target
pattern; e.g. Kuo 2023) or under-learn them (reflecting a bias against the target pattern;
e.g. Hayes et al. 2009). Broadly speaking, two types of bias are seen. These are i) syn-
chronic preferences towards acquiring some phonological patterns over others (analytic
bias; Moreton 2008), and ii) channel bias, or factors in the production or perception of

speech that affect the faithful transmission of speech sounds over time.

One view of biased phonological learning, which Hayes et al. (2009) call the ‘strong
UG’ approach, holds that learners have an innate universal constraint set (or a set of
rules). Phonological patterns that cannot be derived by these constraints are simply un-
learnable. This approach is taken up by Becker et al. (2011), who use a nonce-word study
to test whether Turkish speakers have learned the lexical statistics of consonant laryngeal

alternations (examples in (2)).

Corpus studies show that word length, place of articulation, and preceding vowel
quality (height/backness) are all significant predictors of rates of laryngeal alternation in
Turkish. In a wug test, Turkish speakers were found to be sensitive to length and place

of articulation, but not preceding vowel quality.

Becker et al. (2011) argue that this is because constraints which encode interactions
of vowel height/backness with consonant voicing are not available to learners (i.e. not
in the universal set of constraints), making the Turkish vowel-consonant interactions un-

learnable.

(2) Turkish laryngeal alternations (Becker et al. 2011, p. 85)
BARE STEM POSSESSIVE

Non-alternating atf® atfh-i ‘hunger’
anatf® anatfh-i ‘female cub’

tf~d3 gytfh gyds-i ‘force’
amatf® amad3-i ‘target’

In contrast to this stronger approach, I assume that learning biases are a ‘soft’ prefer-

ence: linguistically unnatural patterns are harder to learn, but can still be learned given
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sufficient evidence. I adopt the soft bias approach for several reasons: typologically, there
is substantial evidence that phonological patterns are not always natural; some examples
can be found in Hellberg (1978),Bolognesi (1998), Ito & Mester (2003), Hansson (2007),
and Odden (2007). Experimental work on bias learning has also shown that speakers can
learn unnatural patterns. For example, Hayes et al. (2009) conduct a wug test on Hun-
garian vowel harmony and find that when given enough evidence, speakers can learn
unnatural patterns present in the lexicon. Artificial Grammar Learning experiments also
suggest that both infants and adults can learn unnatural phonological patterns; see for
example Seidl & Buckley (2005) on infant learning and Wilson (2006) and White (2013,
2017) on adult learning.

Two types of bias have been discussed in the literature: 1) complexity bias, or a bias
against formally complex patterns (Moreton & Pater 2012a) and 2) substantive bias, or a
bias against phonetically unnatural patterns, where phonetic naturalness includes factors

such as perceptual similarity and articulatory ease (Moreton & Pater 2012b).

Within the literature on substantive bias, most recent work has focused on perceptual
similarity bias, or a preference for alternation patterns that involve perceptually smaller
changes (e.g. Steriade 2001; Wilson 2006; White 2013; Glewwe 2019). For example, in
an AGL study, Wilson (2006) found that participants trained to palatalize velars before [e]
generalized palatalization to apply before [i] (/ke/~[tfe] generalizes to /ki/~[tfi]). On
the other hand, those trained to palatalize velars before [i] did not generalize to the [e]
context (/ki/~[tfi] /4 /ke/~[tfe]). This asymmetry is argued to be rooted in a perceptual
similarity bias: speakers prefer [k]~[tf] alternation before [i] because [k] and [tf] are

perceptually more similar before [i] than before [e].

Another possibility, which is the empirical focus of this dissertation, is a so-called
markedness bias, or a bias against output forms that are harder to produce or per-
ceive. Whereas perceptual similarity bias looks at the mapping between related forms

(e.g. input-output, output-output), markedness bias targets the surface output form.

For example, intervocalic stops are cross-linguistically dispreferred and often the tar-
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get of lenition processes at morpheme boundaries (e.g. Jun 1994 on Korean; Hayes 2011
on English; Wheeler 2005 on Catalan). They are also argued to be dispreferred from an
articulatory point of view (Kirchner 1998). It is therefore conceivable that learners are
biased against output forms like [pati] relative to [pari], where the former is dispreferred

because it has an intervocalic [t].

1.2 Reanalysis and modeling reanalysis

One way to understand the interaction between frequency effects and bias is to see how
learners deal with conflicting data patterns in morphophonological paradigms. For ex-
ample, Albright & Hayes (2003) look at past tense formation in English, where there are

sometimes conflicting generalizations on how to derive the past tense for a given word.

The data in (3) gives an illustrative example; the generalizations given here come from
Albright & Hayes (2003), who use data from the CELEX database (Baayen et al. 1996).
In this case, a hypothetical nonce word gleed [glid] has at least four possible past tense
forms, each associated with statistical generalizations of varying strength. In other words,

to form the past tense for gleed, learners must choose one of multiple competing options.



(3) Rules for forming the past tense of gleed (Albright & Hayes 2003, p. 128)!

Adjusted
Output Rule Confidence (p) Examples
gleeded (— od /{d, t}__ 0.872 want, need, start, decide
gled i—e/{lLr}_d 0.793 read, lead, bleed, breed
glode i— o0/ C__[+cons] 0.033 speak, freeze, weave
gleed no change / __{d,t} 0.024 shed,spread,put

More generally, given a bare stem, if a learner has never heard the past tense form,
they must choose between several possible options. Albright & Hayes (2003) (and many
other studies) probe at how learners resolve this type of paradigm ambiguity using nonce-
word experiments. Another way to understand speaker intuitions is to see how they
mislearn real words. In particular, the challenge posed by conflicting data patterns can
cause children to mislearn words. For example, children often mislearn the past tense of

go as goed (cf. went).

Reanalysis, which is my empirical focus, refers to when innovative variants such
as goed are adopted into speech communities and passed down to the next generation
of speakers. In essence, ambiguity in one slot of a paradigm causes other slots of the
paradigm to be reanalyzed, resulting in a type of language change. Some examples of

reanalysis in English past tense are given in (4).2

(4) Reanalyses in English past tense formation

STEM PST
help halp—helped (1300, OED)
dive dived—dove (1800, OED)

!Generalizations here are based off of the Albright & Hayes (2003) Minimal Generalization Learner
(MGL), though in principle similar generalizations could be found using other approaches. Note that the
MGL calculates an adjusted confidence value, which accounts for not just how accurate a rule is, but also
how much evidence there is for the rule (i.e. the number of forms the rule could apply to). For simplicity,
this table presents only adjusted confidence.

2In some cases, such as dived vs. dove, there is still variation, and both variants are observed.
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Reanalysis is closely related to analogical change. Analogy describes when a word is
changed on the basis of perceived similarity to another word, but has also been more
broadly defined as any changes to a word that cannot be explained by regular sound
changes. In fact, much work on change in morphophonological paradigms uses the term
analogy (e.g. Hare & Elman 1995; Albright & Hayes 2003; Albright 2008, and many
more). I use the term reanalysis to emphasize that I am focusing on systematic changes
shared by multiple words in the same paradigmatic relationship. In contrast, analogy has

traditionally been used to describe associations between individual words.

Moreover, in probabilistic models of morphophonology, the term ‘analogy’ also has
theoretical implications, and can refer to specific exemplar-based implementations (e.g.
Analogical Modeling of Language; Skousen 1989) which contrast with rule-based (or
constraint-based) frameworks. The term reanalysis is more neutral, and less tied to

exemplar-based frameworks.

The rest of this section discusses early work on analogical change and ties this to more

recent work that focuses on modeling reanalysis in probabilistic grammars.

1.2.1 Analogy as associative proportions

Historical linguists of the late 19th century defined analogy as an associative process in
language change, where individual words become the model for change in other words.
For example, a famous analogy in the history of Latin eliminated a stem-final contrast be-
tween [r] and [s] (Hock, p. 179-190; Kiparsky 1997; Albright 2005, etc), as shown in (5).
This process of analogical leveling was described in terms of the four-part proportional
analogy in (6), where words like [hono:s] were influenced by non-alternating stems like

[soror] ‘sister’ (Hock 1991, pp. 179-190).



(5) Pre-leveling Post-leveling

hono:s honor
hono:ris hono:ris
hono:ri: hono:ri:

hono:rrem  hono:rem

(6) [soro:ris]:[soror] :: [hono:ris]:[honor]

Analogy was used to account for apparent irregularities in language change (in con-
trast to regular sound change). As such, although it was generally recognized that ana-
logical changes results from the collective influence of many words, analogy was often
discussed in terms of individual cases. Scholars of the time pointed out various tendencies
about the direction of analogy. For example, Kurylowicz & Winters (1947) and Manczak
(1957) listed guiding principles on the direction of analogical change, citing factors like
markedness and frequency. However, there wasn’t much work on analogical change as a
probabilistic phenomenon, and guidelines did not make concrete, language-specific pre-

dictions about the direction and outcome of analogy.

1.2.2 Analogy (and reanalysis) as regularization

Kiparsky’s (1965; 1988; 2012, et seq.) seminal works redefined analogy as regulariza-
tion, or the reduction of unmotivated grammatical complexity and idiosyncrasy. More
concretely, the direction of analogical change is governed by principles such as bleed-
ing/feeding ordering and reduction of rule opacity. Under this approach, analogy is
closer to what I refer to as reanalysis, encompassing not just exemplar-based changes
(i.e. associative proportions), but also systematic changes which require consideration of

the grammar and lexicon as a whole.

Kiparsky’s approach also shifted the focus away from looking at analogy as a purely

diachronic phenomenon. Instead, diachronic changes and synchronic morphophonology



are enforced using the same principles. In subsequent years, there have been various
attempts to formalize analogy/reanalysis in a more systematic way. The idea of reanal-
ysis as regularization (or more specifically the idea that paradigms tend to be uniform)
has been formalized in Optimality Theory as constraints like PARADIGM UNIFORMITY,
LEVEL, and UNIFORM EXPONENCE (Kenstowicz 1996, 1997; Steriade 1997; Kager 2000,
and more). For example, Kenstowicz (1996) analyzes the [hono:s] > [honor] change as

the promotion of a constraint which requires uniformity in noun paradigms.

Kiparsky formalizes the idea of regularization in language change using constraint-
based frameworks, but he notes that the same arguments can be made in rule-based
frameworks. In fact, subsequent work, such as by Dresher (1980; 1985; 2015, etc.),
argues for an approach in which both diachronic change and synchronic grammars are

viewed through the framework of rule-based generative phonology.

For example, Lahiri & Dresher (1999) use this rule-based approach to explain seeming
inconsistencies in the history of English vowel length alternations. Middle English under-
went two processes, Open Syllable Lengthening (OSL) and Trisyllabic Shortening (TSS),
defined in (7) and (8), which interacted to result in vowel length alternations. However,
these processes are not reflected consistently in present day English; there is considerable
variation the length of vowels that should have undergone OSL and TSS (Minkova 1982).
Moreover, OSL is expected to have resulted in vowel length alternations in English singu-
lar/plural nominal paradigms, but such alternations are largely absent from present-day

English.

(7) Open Syllable Lengthening (OSL): A short stressed vowel in an open syllable must
be long.

(8) Trisyllabic Shortening (TSS): A long stressed vowel followed by two unstressed
syllables must be short.
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Lahiri & Dresher (1999, p. 698) propose that this is because OSL interacted with an-
other process—the loss of schwas in inflected forms-resulting in an opaque alternation
pattern. This is demonstrated in §1.2.2; what used to be a phonologically regular alter-
nation became unpredictable. The addition of plural /s/ variably leaves the vowel length
unchanged, shortens a long vowel, and even lengthens a short vowel. Learners, faced

with this opacity, are argued to have leveled the length alternation.

(9) Expected singular-plural pairs in Middle English, from Dresher (2015, p. 28)

Before loss of schwa After loss of schwa
singular plural Singular Plural
ston stones  (OSL) ston stons
bodi bodies  (TSS) bodi bodis
god godes  (OSL) god gods
béver beveres (TSS) béver bevers

In this example, a better understanding of English length alternations was achieved by
considering how lengthening and shortening interacted with other phonological processes
in the synchronic grammar. In general, like Kiparsky’s approach to analogical change,
this generative analysis put a greater focus on reanalyses not as isolated processes, but as
motivated by grammar-wide principles. Moreover, the division between regular sound

change and analogy is less drastic, as both are formulated in terms of generative rules.

1.2.3 Probabilistic models of reanalysis

Recent research on reanalysis/analogy has become increasingly centered around cap-
turing speakers’ detailed statistical knowledge about regularities (and subregularties) in
morphophonology. Various computational implementations of reanalysis have been de-

veloped to explain this type of statistical knowledge.

Formal implemented models of reanalysis face two challenges. First, they must be

powerful enough to capture gradient and probabilistic data. In particular, experimental
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evidence suggests that people can make very fine-grained generalizations about mor-
phophonological alternations (Bybee & Moder 1983; Prasada & Pinker 1993; Albright &
Hayes 2003). Going back to English past tense formation as an example, sub-generalizations
such as “i = A/ _nl;+pasy” (corresponding to fling/flung, sting/stung, etc) co-exist with a

more general suffixation rule.

On the other hand, models of reanalysis should also be restrictive. Evidence from
language change and child errors show that attested reanalyses only account for a small
fraction of the logically possible changes (e.g. Simdes & Stoel-Gammon 1979; Clahsen
et al. 2002; Kang 2006; Albright 2010). A model of reanalysis should be able to explain

why speakers don’t generalize some properties of the input data.

Most quantitative models of reanalysis have focused on the first challenge of capturing
probabilistic patterns in the data. These models include neural networks (Rumelhart &
McClelland 1987; MacWhinney & Leinbach 1991; Daugherty & Seidenberg 1994; Hare
& Elman 1995), Analogical Modeling of Language (AML; Skousen 1989), symbolic ana-
logical models (Tilburg Memory-Based Learner Daelemans et al. 2004), the Generalized
Context Model (Nosofsky 1990, 2011), and decision-tree-based models (Ling & Marinov
1993). For example, Hare & Elman (1995) use a connectionist model (essentially a shal-
low neural network) to model reanalysis of English past tense inflection, which changed
from a highly complex system in Old English to the more regular system found in today’s

English.

1.2.4 Probabilistic rule-based models (Albright 2002b)

While earlier work focused on developing models powerful enough to capture gradient
subregularities in morphophonology, Albright (2002b,a, 2008, 2010, et seq) focuses on
the second problem of developing a sufficiently restrictive model. In my work, I adopt
Albright’s assumptions, with some differences that will be pointed out here and expanded

on in Chapter 2.
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STRUCTURED SIMILARITY. This is the idea that word-forms must share the same structural
description to be the basis for reanalysis. Structured similarity contrasts with exemplar-
based views of reanalysis/analogy, in which any form that shares some similarity with the
target word can be the basis of reanalysis (even if they don’t all share the same structural

description).

Albright formalizes the requirement for structured similarity by using a rule-based
framework. For example, a rule like “1 = A / _9];4pasty” describes past-tense formation
in singular-past pairs like fling/flung, sting/stung, cling/clung. Crucially, it also captures
the fact that these word-pairs all share the same structural description, where the bare

stem ends in [1m].

In the rest of this dissertation, I also assume structured similarity, but encode this
using constraints (in variants of Optimality Theory; Prince & Smolensky 1993). As will
be further discussed in Chapter 2, I adopt an Optimality Theoretic approach because I
am looking at markedness effects which are essentially generalizations about the output
(product-oriented generalizations), rather than about input-output mappings. Product-
oriented generalizations are easily captured using markedness constraints in OT, but are

less straightforwardly accounted for in rule-based frameworks.?

SINGLE-BASE HYPOTHESIS. Albright also proposes that reanalysis is always from one
paradigm slot, and it is the maximally informative one. This paradigm slot serves as
the so-called ‘base’ of reanalysis. In cases where two slots are of similar informativeness,
other factors like token frequency and a preference for morphologically simple bases

might come into play (Albright 2008).

In my dissertation, I am looking at case studies where reanalysis can only occur from
one paradigm slot, so in some sense, this restriction for a single base is vacuously satisfied.

However, most of the cases I look at actually involve reanalysis from the less informative

3In reality, work by Bybee and colleagues suggests that speakers form both source-oriented general-
izations (which capture input-ouput relations) and product-oriented generalizations (Bybee & Slobin 1982;
Bybee & Moder 1983; Bybee 2003).
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base (i.e. the one where contrasts have been neutralized). This suggests that base in-
formativeness may be less of a hard restriction, but rather one of the many factors that

affects the direction of reanalysis.

Notably, all the models discussed so far assume reanalysis to be in the direction of the
statistically most probably outcome, given the distribution of sounds within a paradigm.
In other words, they are all frequency-matching. However, I am arguing, on the basis of
the case studies discussed below, that statistical distributions alone is not always sufficient
for predicting the output of reanalysis. Instead, models of reanalysis must also account

for markedness effects, or a pressure to reduce the markedness of output forms.

1.3 Active vs. universal markedness

The term “unmarked” has a broad meaning, and has been used to describe output forms
that are simpler, more common, easier to produce, acquired earlier, etc. In general,
markedness has come to refer to the universals of language (e.g. Jakobson 1963; Green-
berg 1966), determined by Universal Grammar (Chomsky & Halle 1968; Kean 1975, and

many others following them).

When we consider markedness effects in reanalysis, it is also important to consider
how such effects are constrained—in other words, what is the range of markedness effects
that are able to influence reanalysis (and more generally, morphophonological learning)?
One view, which I refer to as “universal markedness”, is that all possible markedness
constraints as defined by Universal Grammar can affect reanalysis. Another view, which
I call “active markedness’,” is more restrictive, and predicts that markedness constraints
can only affect reanalysis if they are already active in the lexicon in the form of stem

phonotactics.

The active markedness proposal is attractive because it ties into existing theories of
acquisition and empirical findings about the relationship between phonotactics and mor-

phophonology. Typologically, similar phonological generalizations tend to hold within
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morphemes and across morpheme boundaries; in other words, alternations are consistent
with stem phonotactics (Chomsky & Halle 1968; Kenstowicz 1996). This is especially true
once we consider gradient effects; Chong (2019) shows that even in cases of apparent mis-
match between phonotactics and alternations, there is often some gradient phonotactic
support for an alternation pattern. Additionally, alternations that are not supported by

phonotactics tend to be under-attested.

Theoretically, a tight connection between phonotactics and morphophonological is
built into classical Optimality Theory, where within-morpheme and cross-morpheme gen-
eralizations are modelled using the same mechanism (i.e. the same markedness constraint
and constraint ranking). Another related view, held by many theories of learning and ac-
quisition, is that phonotactics and alternations tend to be closely related because phono-
tactics are learned earlier, and aid in the later learning of alternations (Hayes 2004; Jarosz

2006; Tesar & Prince 2003; Yang 2016).

There is also some experimental work supporting the idea that phonotactics aids in
alternation learning. For example, Pater & Tessier (2005) find that English speakers learn
a novel alternation pattern better when it is supported by English stem phonotactics.
In an AGL experiment, Chong (2021) trains speakers both a novel phonotactic pattern
and novel alternation patterns. Results suggest that speakers draw on phonotactics to
resolve ambiguities in morphophonological alternations. There is also work showing
that phonotactics are easier to acquire than alternations; phonotactic generalizations are
acquired earlier by children (e.g. Zamuner 2006), and can be acquired by adults even

with limited input (Oh et al. 2020).

In work on compound formation, Martin (2011) also finds similar effects of active
markedness. In particular, Martin presents evidence from Navajo and English that the
same phonotactic constraints present within morphemes are also active in compound for-
mation, albeit as a weaker, gradient effect. In other words, there is evidence that speakers
generalize phonotactic constraints across morpheme boundaries. Given Martin’s findings,

it is conceivable that stem-internal phonotactics could also constrain cross-morpheme al-
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ternation patterns.

Within work on language change, findings from Garrett (2008) support the idea that
markedness-motivated paradigm reanalyses are a product of language-specific factors
rather than a direct manifestation of UG. While Garrett’s focus is on semantic (rather
than phonological) markedness patterns, his findings still provide support for the idea

that reanalysis is driven by markedness effects already present in the language.

For these reasons, I propose that markedness bias is restricted to active markedness
effects. In other words, speakers utilize markedness principles already present in the
language’s phonotactics when resolving ambiguities in an alternation pattern. I will
show that the case studies presented in this dissertation are all consistent with the ac-

tive markedness proposal.

1.4 When can markedness-driven reanalysis occur?

My proposal, broadly speaking, is that reanalysis should be phonologically optimizing.
The active markedness approach, in particular, predicts that reanalysis will result in a
close correspondence between stem-internal phonotactics and cross-morpheme alterna-
tions. I also argue that this type of markedness-driven reanalysis only comes into play
when there is uncertainty in an alternation pattern. In other words, markedness effects
in reanalysis are only observed when there is conflicting evidence for which alternant

should surface, and one alternant is less marked than the competing alternants.

This distinction is important because it allows mismatches between phonotactics and
alternations to persist if an alternation pattern is predictable. There is crosslinguistic ev-
idence that phonotactics-alternation mismatches can persist in a language. For example,
Turkish vowel harmony operates within stems but not across compounds or phonological
words (Kabak & Vogel 2001); see also Gouskova (2018) for an overview of similar mis-
matches. Experimental evidence from Gallagher et al. (2019) also supports the idea that

speakers are able to learn different cross-morpheme and morpheme-internal phonotactic
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generalizations.

Relatedly, morphophonological patterns which are not phonologically optimizing can
also persist if the relevant pattern is predictable. In particular, there is crosslinguistic
evidence for phonologically conditioned suppletive allomorphy, or cases where allomorphy
has clear phonological conditioning but is not output-optimizing (Paster 2005, 2009). For
example, in Tzeltal, the perfective allomorph that surfaces (-eh vs. -oh) depends on how

many syllables the stem has, in a way that is not output-optimizing.

In summary, although my proposal of markedness-driven reanalysis predicts a strong
connection between within-morpheme and cross-morpheme phonotactics, it is also con-
sistent with cases of mismatch because reanalysis occurs only when there is uncertainty

in the morphophonology.
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CHAPTER 2

Modeling reanalysis

In this section, I outline a model of reanalysis that will be used to quantitatively demon-
strate the effects of markedness biases in three empirical case studies. The purpose of
modeling is not to generate novel results, but to help us understand the interaction of dif-
ferent variables in a system (Nigg 1994). More concretely, modeling allows us to probe at
phenomena that are not directly observable, and also explicitly test intuitions about how
certain patterns have arisen. In the current project, the goal of modeling is to understand

how different variables affect reanalysis.

In Chapters 3-5, I present case studies where reanalysis is argued to be best explained
by the interaction of frequency-matching with a markedness bias. However, it is also
important to consider other factors such as types of frequency (type vs. token) and dif-
ferent learning biases (e.g. perceptual similarity bias). Computational models allow us to
do just this, by quantifying and comparing the effects of different factors that may con-
tribute to reanalysis in one direction or the other. In the context of language change (and
specifically reanalysis), modeling is a particularly helpful tool. This is because reanalysis
happens over generations of speakers, and is often inferred from limited historical data.
Fine-grained data on all the intermediate stages of a change are rarely available, making

it hard (or impossible) to find direct evidence for a hypothesis.

The model that I adopt is based in Maximum Entropy Harmonic Grammar (MaxEnt;
Smolensky 1986; Goldwater & Johnson 2003), a probabilistic variant of Optimality The-
ory. Learning biases are implemented as a Gaussian prior, following the methodology

laid out by Wilson (2006) and White (2013, 2017). Finally, to mirror the cumulative
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effect of reanalyses over time, the model has an iterative (generational) component, in
which the output of one iteration of the model becomes the input for the next. In the rest

of this chapter, I will go over each component of the model.

(10) Toy data: final devoicing

STEM SUFFIXED (PL) UR
bet bed-a /bed/ ‘cat’
mot  mot-a /mot/ ‘dog’

For illustrative purposes, throughout this chapter I will use a toy example taken from
Pater et al. (2012). In this toy language, exemplified in (10), stops are always voiceless
word-finally and may alternate in voicing intervocalically, in this case when suffixed with
the plural /-a/. The classic analysis for a pattern like this is that voicing is contrastive,
but neutralized word-finally due to a process of final devoicing. Therefore, the word for
‘cat’ has the UR /bed/, where /d/ is devoiced to [t] in the bare stem. In contrast, ‘cat’

ends in an underlying /t/, so the final consonant is non-alternating.

If a speaker of this language is presented with a stem like [pat] and they have never
heard the suffixed form, they must decide if the final [t] will be non-alternating (cor-
responding to UR /pat/) or alternating (corresponding to a UR /pad/). This ambiguity,
illustrated in (11), can result in the learner reanalyzing a stem. For example, suppose that
the original plural form of [pat] was [pat-a] (with a UR /pat/). If the language-learning
child mis-learned the suffixed form to be [pad-a], and this change was passed down to

the next generation of speakers, it would represent reanalysis in the direction of t—d.
(11) Ambiguity in final obstruents
[pad-a] /pad/
[pat] <
[pat-a] /pat/
Existing probabilistic models of reanalysis predict these changes to be in the direction

of the most likely alternant (see Chapter 1 for a review). Suppose that the toy lexicon had
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the distribution given in (12), where 70% of final [t]’s are non-alternating. A statistical
learning model would predict reanalysis to be mostly in the direction of d—t. On the
other hand, if reanalysis happens in the direction of t—d, something other than statistical
learning would be needed to explain the data. In this example, one possible cause could
be a markedness bias against intervocalic voiceless consonants; such a bias would disfavor
outputs like [mota] with an intervocalic [t], but not [beda]. The model I adopt must be
able to capture frequency-matching behavior, while also accounting for effects of different

learning biases.

(12) Example: distribution of alternants

TYPE EXAMPLE N
t~d [bet]~[beda] 30
t~t [mot]~[mota] 70

2.1 A MaxEnt model of reanalysis

Because I am looking at gradient (as opposed to categorical) alternations, I adopt Max-
imum Entropy Harmonic Grammar (MaxEnt; Goldwater & Johnson 2003; Smolensky
1986), a probabilistic variant of OT which uses weighted (instead of ranked) constraints,

and generates a probability distribution over the set of candidate outputs.

In principle, other stochastic models of morphophonological learning may also work
as models of reanalysis. For example, the Minimal Generalization Learner (Albright &
Hayes 2003), introduced in Chapter 1, uses probabilistic rules, rather than constraints, to

encode morphophonological alternations.

I adopt a constraint-based approach for the following reasons. First, I am looking
at markedness effects in morphophonology, which I also argue to be restricted by stem
phonotactics. OT straightforwardly captures product-oriented generalizations of this type,

and more importantly can enforce phonotactics and alternations using the same con-
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straints. In other words, phonological effects in morphology can be captured by an output-
optimizing approach, where markedness is ranked above faithfulness (McCarthy & Prince
1993). For example, in our toy example above, a bias against intervocalic stops might
be formalized in terms of a constraint *VTV, which penalizes both bare stems like [pata]

and suffixed forms like [mot-a].!

In contrast, rule-based accounts (SPE; Chomsky & Halle 1968) are source-oriented,
meaning that are described in terms of the input. While a bias against VTV sequences can
be enforced using a rule of intervocalic voicing (t—d/V_V), there is no linking mechanism
between stem phonotactics and alternations. In fact, in rule-based generative phonology,
alternations are enforced using regular phonological rules, while stem phonotactics are
enforced using context-free Morpheme Structure Rules/Constraints prior to the applica-
tion of phonological rules (Halle 1959; Stanley 1967; Chomsky & Halle 1968). The two
are treated as separate even though they often achieve the same goal (Duplication Prob-

lem; Kisseberth 1970; Kenstowicz & Kisseberth 1977).

Work by Bybee and colleagues (Bybee & Slobin 1982; Bybee & Moder 1983; Bybee
2003) suggests that speakers form both source-oriented and product-oriented generaliza-
tions. Albright & Hayes (2003) similarly find that while most speaker generalizations
about English past tense formation can be formalized as input-output mappings , a subset
are better characterized as generalizations on output forms. One potential weakness of
my current approach is that compared to rule-based approaches, constraint-based frame-
works are less suited to capturing source-oriented generalizations. Nevertheless, as noted
by Bakovié¢ (2007), constraints can be formalized to capture the rule-based generaliza-

tions.

1As a caveat, Paster (2005, 2009) finds that some morphophonological patterns cannot be captured
using this output-optimizing approach. In particular, phonologically conditioned suppletive allomorphy
requires additional mechanisms such as subcategorization constraints.
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2.1.1 MaxEnt learning algorithm

In MaxEnt grammars (Goldwater & Johnson 2003), constraints are not ranked, but are
instead weighted. Each input-output pair [z;,y;;] is assigned a harmony (/;;), which is
the weighted sum of its constraint violations. Harmony is calculated using the equation
in (2.1), where m is the number of constraints, w,, is the vector of constraint weights, and

fm is the vector of constraint violations.

H;; = Zwmfm<mi>yij> (2.1)

Harmony is more broadly a property of the family of Harmonic Grammars which use
weighted constraints (Smolensky & Legendre 2006). In MaxEnt, harmony is mapped
onto probabilities, where p(y;;|z;) (the probability of an output y;; given an input x;) is
calculated by taking the negative exponential of the harmony and normalizing this value
by input as in (2.2).

Hij

1
p(yz'j\xi) = 76

i
Zi: E eHij/
jl

(2.2)

The tableau in (13) illustrates how constraint evaluation works using our toy language.
Final devoicing is enforced using a constraint NOFINALVOICE. Because NOFINALVOICE
strongly outweighs the competing faithfulness constraint IDENT[voice], voiced stops are
devoiced word-finally. This is shown for the input /bed/; candidate (a) is faithful but
violates NOFINALVOICE, and is therefore assigned a higher harmony score. This in turn
translates to a lower probability (P~0). For ease of reading, predicted probabilities under

10~3 will be written as 0 in all following tableaux.

When /bed/ is suffixed, the faithful candidate (c) [beda] incurs no markedness viola-

tions. In contrast, candidate (d), which undergoes a voicing alternation that actually in-
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creases violations of *VTV, is assigned a higher harmony and correspondingly a near-zero
probability. Finally, given an input such as /mot-a/, the faithful candidate (e) violates
a markedness constraint *VTV, which penalizes voiceless intervocalic stops. However,
because *VTV has zero weight, it does not affect harmony, and candidate (e) still has a

predicted probably of around 1.

(13) Tableau: final devoicing

[sa]

O | —

o) L

> |8

< | 2

Z | &

= >

5| &|E

Z E x

o—H
ObS 12 6 0 H e_H Z P=7

/bed/
a. [bed] 0 1 12 |1 6.1x1073 | 2.5x1072 | 3.35x10*~0
b. [bet] 1 1 6 | 2.5x1073 | 2.5x1072 | 0.999~1
/bed/+ /a/
c. [beda] 1 0 ~1 ~1 ~1
d. [beta] 0 11| 6 |25%x10°3 ~1 ~0
/mot/+ /a/
e. [mota] 1 1,0 ~1 ~1 ~1
f. [moda] | O 1 6 |2.5%x1073 ~1 ~0

Unlike classical OT, where strict ranking ensures that losing candidates never surface,
all candidates in MaxEnt grammars receive some probability. However, if constraint
weights are sufficiently different, MaxEnt produces results that are functionally very sim-
ilar to classical OT, where the winning candidate gets near-perfect probability. In fact,
Johnson (2002) shows that as there is a finite limit on the number of constraint viola-
tions, there is a corresponding MaxEnt analysis for any classical OT analysis (of categorical
data). When constraint weights are similar to each other, the model will predict variation

and assign multiple candidates non-negligible probabilities.
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The tableau in (13) uses hand-fitted weights, but in practice the learning problem of
MaxEnt is to find weights that maximize the probability of the observed data Pr(D). This
value, also known as likelihood, is essentially the joint probability of all outputs y;; given
their respective inputs z;. The equation for calculating likelihood is given in (2.3), where
p(yi;|z;) is the conditional probability of each output candidate y;; given its input z;, while

n is the observed frequency of each input-output pair.

Pr(D) = HHp(yij‘l'i)n (2.3)

Because probabilities are being multiplied in (2.3), Pr(D) will become extremely small
as the number of possible output forms increase. In practice, it is therefore computation-
ally easier to optimize the log likelihood given in (2.4), which is the sum of the logs of
each p(y;;|z;). The log function is monotonic, so minimizing log likelihood achieves the

same result as minimizing likelihood.

log(Pr(D)) = 3 > nlog(p(y; ) 2.4)

To summarize, MaxEnt optimizes an objective function, which in this case is the log
likelihood of the observed outputs given in (2.4). The search space of log likelihoods is
convex and therefore the optimal set of weights can be found by any standard optimiza-
tion algorithm (Berger et al. 1996). The resulting model is will match rates of alternation

in the lexicon and predict frequency-matching behavior.

In this dissertation, constraint weights were learned using the R package maxent.ot
(Mayer et al. 2022), which uses the Limited-memory BFGS optimization algorithm (Mal-
ouf 2002) implemented in the optim function from the R-core statistics library. Constraint

weights are also restricted to finite, non-negative values.?

2Nearly identical results are found using other gradient-based optimization methods such as the Excel
Solver (Fylstra et al. 1998), which uses the Conjugate Gradient Descent method.
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2.1.2 Learning biases in MaxEnt

In addition to log likelihood, the objective function in MaxEnt can also include a regu-
larizing bias term, often referred to as a Gaussian prior. The prior is defined over each

constraint weight, defined in terms of a mean u and standard deviation o>:

m 2

prior = Z % (2.5)

i=1 i
In a model which takes into account the prior, the objective function is the log like-

lihood subtracted by the prior, as given in (2.6). The goal of learning is now to both

maximize the log likelihood and minimize the prior.

m (wZ

S . — 1)
objective function = ; ; nlog(p(yijlzi)) — ; o7 (2.6)
The numerator of this prior term is the squared difference of each constraint weight
and its associated p value. Consequently, as a constraint weight deviates from its p, the
penalty imposed by the prior increases. We can therefore think of the p for each weight

as its a priori preferred weight.

The other parameter, o, determines how strongly each constraint weight is tied to
its u. When o is large, the denominator will be large, meaning that deviations from p
will only incur a small penalty. In contrast, when o is small, a greater penalty will be
incurred when weights deviate from their pu. In other words, the smaller o is, the more

data is required to move weights away from p during learning.

When the prior is uniform (i.e. 1 and o are the same for all constraints), the model
prefers grammars where weight is even distributed among constraints. For this reason,
Gaussian priors are often used in MaxEnt models as a way to prevent overfitting (e.g.

Goldwater & Johnson 2003; Martin 2011).

3The prior is Gaussian in the sense that when converted to a probability space, it is a Gaussian distri-
bution with mean p and standard deviation o
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Following the approach developed by Wilson (2006), I use a non-uniform prior to
implement bias. In principle, bias can be implemented by varying either o (e.g. Wilson
2006) or varying u (e.g. White 2013, 2017). I follow White (2013) and implement bias
by varying p values while keeping o at a constant, relatively low value. More concretely,
constraints with high p values will prefer to have high weight, while those with low p
will prefer to have lower weight. This is demonstrated for our toy devoicing example
in (14). The tableau is mostly identical to (13), with the added difference that each
constraint is now associated with a u and o. Crucially, *VTV is assigned a higher u value
than competing faithfulness constraints. As a result, the model is biased to learn a higher
weight for *VTV and ends up slightly dispreferring candidates like (e) (/mot-a/ —[mota]),
which violate *VTV.

(14) Tableau: final devoicing with a markedness bias

S| 2
£ 8|
z| 8| %
wl|9]45]|09
uwiio| o 1
o||1] 1 1 H P
/bed/
a. [bed] 0 |1 9 |0
b. [bet] 70 1 45 |1
/bed/+ /a/
c. [beda] | 30 0 |1
d. [beta] 0 1 1 |54
/mot/+ /a/
e. [mota] | 70 1 |0.9]|0.97
f. [moda] | O 1 4.5 | 0.03

This method of implementing bias as a prior term predicts that as the amount of

input data increases, learners become less sensitive to learning biases. This is because
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the objective function has two terms, the log likelihood and the prior. Log likelihood will
increase as the number of observed input-output pairs increase, while the prior term will
not (since it is a function of constraint weights rather than inputs). All else staying equal,
this means that log likelihood will become more influential relative to the prior as the

amount of training data increases.

I argue that this is a desirable consequence in line with findings from acquisition.
Many theories of acquisition predict that markedness plays a stronger role in early learn-
ing, while frequency-matching becomes more prominent as the learner’s lexicon increases;
examples include the Tolerance Principle (Yang 2016) and Frequency Hypothesis (Levelt
& Van de Vijver 1998/2004; Levelt et al. 2000). Various studies have also found empiri-
cal support for this learning trajectory (e.g. Levelt et al. 2000; Gnanadesikan 2004; Jarosz
2010).

In this dissertation, I look specifically at how phonotactic markedness effects can in-
fluence the learning of paradigms. A large body of work shows that children acquire
phonotactics earlier than morphophonological alternations, and are moreover able to ac-
quire fine-grained statistical generalizations about the phonotactics from an early age
(for a review, see Sundara et al. 2022). It is therefore plausible that learners rely more
on phonotactics in the early stages of paradigm learning. As their evidence for a mor-

phophonological paradigm increases, they become better frequency-matchers.

2.2 Reanalysis as UR inference

In morphophonemic learning, learners must acquire both underlying representations and
a phonological grammar mapping from these URs to surface representations. In other
words, learners must concurrently learn Input-UR-SR mappings, where the Input is some-
thing like meaning or intent, typically encoded as morphosyntactic features. Various
work has tackled this problem, including: models that use ranked constraints with error-

driven learning (e.g. Tesar et al. 2003; Apoussidou 2006; Merchant 2008), maximum
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likelihood learning in probabilistic frameworks (e.g. Jarosz 2006; Pater et al. 2012; Nel-
son 2019; Tan 2022), distributional learning with metrics such as Minimum Destription
Length constraints (Rasin & Katzir 2016), rule-based frameworks (e.g. Rasin & Katzir

2020), and Bayesian Program Synthesis with ordered rules (Ellis et al. 2022).

The issue at hand is slightly different: when learners already possess a morphophono-
logical grammar, they must be able to use it to infer URs from incomplete paradigms.
Reanalysis happens precisely because learners, when given incomplete paradigms, some-
times infer a UR that differs from that of the previous generation of speakers. In particular,
such changes enter the lexicon and result in language change, which is only possible if in-
novative URs can be inferred and listed in the lexicon. Results from wug testing also show
that people are able to synthesize novel forms from incomplete data (e.g. Zuraw 2000;
Ernestus & Baayen 2003; Hayes et al. 2009; Zuraw 2010a; Becker et al. 2011; Kawahara
2012; Gouskova & Becker 2013, and many more).

Existing models of Input-UR-SR learning assume that learners have access to complete
paradigms, and therefore do not straightforwardly extend to this task. Where learning
models have been tested against wug data or used to predict reanalysis (e.g. Albright &
Hayes 2003; Ernestus & Baayen 2003; Calderone et al. 2021), they do not make use of
URs.

In this section, I outline a procedure for UR inference, then discuss a few alternatives,
each rooted in different assumptions about whether and how learners infer URs for stems
with incomplete paradigms. In the context of the work described in this dissertation,
the choice among these models is not essential; all alternatives can be used to model the

interaction of frequency effects with a markedness bias.

2.2.1 UR inference

Again, I make the assumption that learners have already acquired a morphophonological

grammar which includes a lexicon of URs, a procedure for building URs from complete
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paradigms, and a phonological grammar mapping from URs to SRs. The main task of the
learner in reanalysis is instead to infer URs when faced with structural ambiguity. For
example, suppose that a speaker of the toy devoicing language would like to produce the
plural form of [pat] ‘rabbit’, but they have never heard it before. They must then decide
whether rabbit has a UR /pat/ or /pad/.

I suggest that this UR inference system is only deployed as needed, when the speaker
has to infer a missing paradigm slot for a given input. When learners have access to a
complete paradigm (or enough entries in a paradigm to resolve any structural ambiguity),

they instead call on their morphophonological grammar to build URs.*

In many ways, an UR inference system resembles typical OT accounts, with key dif-
ferences in the choice of input and output candidates. In UR inference, the input is not a
phonological UR, but rather something like a lexical entry that includes meaning (encoded
as morphosyntactic features) and associated phonetic realizations. This idea of an input
that has no phonological material has been explored in various prior work, including Rus-
sell (1995a), Boersma (1998), Zuraw (2000), Wolf (2008), Pater et al. (2012), and Smith
(2015). For example, to derive the suffixed form of ‘rabbit’, the input would be |RABBIT,
[pat]| + |PL, [a]|. Note that I give inputs in vertical brackets (e.g. |CAT, [bet]|), URs in
slash brackets (e.g. /bed/) and derived SRs in square brackets (e.g. [bet]). Additionally,

where it is not relevant, I omit phonetic realizations from the input (e.g. |RABBIT +PL|).

The candidate set consists of UR-SR pairs, where UR—SR mappings are already de-
cided by the learner’s existing phonological grammar. The table in (15) shows examples
of candidate URs inferred from the input |RABBIT + PL|. I specifically show UR inference
for the plural suffixed form because again, by assumption, UR inference is only active
when speakers are resolving structural ambiguity in a specific paradigm slot. In our toy
language, this means suffixing environments which force speakers to “undo” word-final

voicing neutralization.

4In §2.2.5, I discuss how speakers might resolve competing URs in the case where they infer a UR but
subsequently receive inputs which contradict this UR.
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For |RABBIT +PL|, two obvious candidate URs are /pat-a/ and /pad-a/ (see Section
2.2.2 for further discussion of the candidate set). The right-hand column of (15) shows
the SRs derived from each UR. In cases where words show no within-item variation, each
UR has only one corresponding SR determined by the phonological grammar (i.e. UR—SR
mapping). For example, given a UR like /pad-a/, the SR [pata] is ruled out because
in the lexicon, underlying /d/ never devoices to [t] intervocalically (e.g. /bed/ ‘cat’ is
never observed with suffixed form [beta], which is presumably ruled out by faithfulness

constraints).

(15) Possible derivations of RABBIT-SUFF
UR inference Phon. grammar
Input—UR UR—SR
|RABBIT-PL|—/pat-a/ [patal]
|RABBIT-PL|—/pad-a/ [pada]

Much like a typical phonological grammar, UR inference can be modeled in MaxEnt.
To do this, I first introduce UR Inference constraints, defined in (16), which require sur-
face realizations to mapped be to a particular UR. These UR Inference constraints can be
context sensitive. For example, a constraint specifying that final [t] should be underlying

/t/ can be written as “[t] =/t/, _#”, or in shorthand as [t#]=/t/.

(16) UR Inference constraint

[a]—/b/, C_D: Assign one violation for every phonetic realization [a] in the input
that does not correspond to UR /b/ in context C_D.

This constraint formulation is very similar to UR constraints, which have been pro-
posed in work such as Zuraw (2000) and Pater et al. (2012). The key difference is that UR
constraints are lexically specific mappings of word meaning to URs (e.g. |CAT|—/bed/),
rather than mappings of surface phonetic realizations to URs (e.g. [t]—/d/). UR infer-

ence constraints also resemble cue constraints (Boersma 2007; Boersma & Hamann 2009;
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Apoussidou 2006). However, cue constraints formalize the relation between auditory
forms and phonological surface forms, while UR inference constraints map between sur-

face forms and phonological underlying representations.

The model is trained on SR—UR pairs which parallel the environment where learn-
ers have to infer URs. In our toy examples, speakers have to infer URs when deriving
a suffixed form from an unsuffixed form. The input is therefore UR-SR pairs such as

[mot] + [a] ~/mot-a/.

For example, we can assume the simplified lexicon in (17), consisting of lexical items
with complete stem/suffix paradigms, input into the model as SR-UR pairs. 10 words are
potentially alternating; of these, 7 words are underlyingly /t/-final, while 3 words are
underlyingly /d/-final. The lexicon also contains words with final consonants that never
alternate; for example, final [m] is always /m/ in the underlying representation. Finally,

there are also words showing that medial [t] always corresponds to /t/.

(17) Toy lexicon
’ Type SR UR
final [t]—/t/ [mot] +[a] /mot-a/ 7
[pit] + [a] /pit-a/

final [t]—/d/ [bet] + [a] /bed-a/ 3
[hat] + [a] /had-a/

[m] is always /m/ [kom]+[a] /kom-a/ 5

medial [t] is always /t/ [patar]+[a] /patar-a/ 10
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This training data can be evaluated on UR inference constraints as demonstrated in
tableau (18). Itis essential under this approach that candidates are not just URs, but rather
URs paired with SRs, where the SR is the one derived by each UR (based on the learner’s
phonological grammar). This reflects the empirical results of the current dissertation,
where reanalysis is found to be sensitive to markedness effects. In other words, learners
appear to consider the well-formedness of the derived surface form when inferring new

URs.

Tableau (18) contains both general UR inference constraints (e.g. [t]=/t/) and po-
sitional ones (e.g. [t#]=/t/). The model learns a relative weighting of UR inference
constraints that predicts frequency-matching behavior. First, [t] =/t/ has a much higher
weight than [t] =/d/; this rules out candidates like (h) and (i), ensuring that medial [t]
always corresponds to /t/. The context-specific constraint [t#]=/d/ has some weight,
but is still smaller than [t] =/d/. This ensures that final [t] will sometimes be underlying
/d/, but is still /t/ 70% of the time. Additionally, [t] =/t/ and [t#] =/d/ gang up to rule

out unobserved SR-UR mappings such as [t]—[m] in candidate (c).

A UR inference model can also include markedness constraints that evaluate the de-
rived SR corresponding to each UR. Tableau (18) includes one markedness constraint
*VTV.> The model learns zero weight for *VTV, but a markedness bias can be imple-

mented so that the model will preferentially learn a higher weight for *VTV.

SAs discussed in Chapter 1, I argue that markedness constraints are restricted to active markedness
effects already present in stem phonotactics. Additionally, subsequent chapters show how such constraints
could be learned directly from a phonotactic model.
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(18) UR inference model

INEE
e N U
obs | & E =] = E|7

0/43|55/03|52|0| H P
[CVt] + [a]
a. /CVt-a/ [CVta] 7 1 1 1| 4.6 |0.70
b. /CVd-a/ [CVda] 3 |1 1 5.5 | 0.30
c. /CVm-a/ [CVma] 0O |11 1 1 10.1 | 0.00
[CVm] + [a]
d. /CVm-a/ [CVma] 5 0.00 | 0.99
e. /CVd-a/ [CVda] 0 1 5.2 | 0.01
f. /CVt-a/ [CVta] 0 1 1] 52 0.01
[VtV] + [a]
g. /VtV-a/ [VtV-a] 7 1 1] 0.3 |0.99
h. /VvdV-a/ [VdV-a] 0 5.5 | 0.01
i. /VmV-a/ [VmV-a] 0 1 1 5.8 | 0.00

This is demonstrated in (19), which shows predictions of a model that was run with
the same inputs and constraint set as (18), but has the addition of a prior term. To
implement a bias against intervocalic [t], *VTV can be assigned a higher 1 than competing
constraints. In this model, u=3 for *VTV, u=0 for all other constraints, and o =5 for all

constraints.

The resulting model is similar to the one in (18), except that it learns a non-zero
weight (w=1.4) for *VTV. As a result, the model slightly over-predicts rates of [t]~[d]
alternation (P=0.33 vs. P=0.30). Inclusion of a bias term can therefore account for UR
inference that is not frequency-matching. Additionally, even though the inclusion of a
bias results in just a small difference in predicted probability of different candidates (3%
in this example), such changes can accumulate over generations of reanalysis; I discuss

how such cumulative effects are modeled in the following section.
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(19) UR inference model with a bias

212 (5|8
L -
18| =\ =| 8>
ulololo]olo]s
w|06|43|58| 0 (47|14 | H P
[CVt] + [a]
a. /CVt-a/ [CVta] 7 1 1 1 5.6 | 0.67
b. /CvVd-a/ [CVda] 3|1 1 6.4 | 0.33
c. /CVm-a/[CVma] || 0| 1 1 1 1 10.7 | 0.00

The resulting trained model can then be used to infer URs for words with incomplete
paradigms. To form the UR for |RABBIT +PL|, the learner samples from possible candi-
dates across probability distribution. This means that, given the grammar in (19), they

have a ~67% chance of selecting /pat/ to be the UR.

2.2.2 Candidate set (Input URs)

In the tableau given so far, I assume a relatively small candidate set of URs. The candi-
date set of URs could potentially be much larger. For example, given the surface form
[pat], possible URs could include /pat/ and /pad/, but also candidates like /pak/ (which
diverges further from the observed surface form) and /paD/ (where D is an abstract
phoneme that is never realized faithfully in the surface form). This notion of UR abstract-
ness is formalized by Kenstowicz & Kisseberth (1977, Ch. 1), who set up a taxonomy of

UR-SR distance.

Deciding the level of UR abstractness—or how much URs can diverge from their SRs—
is not central to the UR inference system. This is because I assume that learners have
acquired a morphophonemic grammar that includes mappings of URs to their allophonic

variants. As shown above in tableau (18), SR-UR mappings such as [t] =/m/ are ruled out
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by the UR inference grammar, in the same way that unobserved candidates in a traditional

phonological grammar are eliminated via constraint weighting or ranking.

Nevertheless, it is worth noting that increasingly, findings from language change and
learning experiments support a more restrictive view of URs, where URs are constrained to
be closer to their surface realizations. For example, Kiparsky (1965, 1982) finds evidence
that patterns which are amendable to abstract UR analyses tend to be unstable, and are
often removed by subsequent language change. Recent experimental work supports this
view, showing that such “abstractness-friendly” patterns may be learnable, but are harder

to learn (e.g. White 2017).

2.2.3 What is the base of UR inference?

In the example discussed so far, I assume that only one paradigm slot (the bare stem)
serves as the base of UR inference. In principle, however, any paradigm slot available to

the learner can be a base for UR inference.

In a situation where multiple possible paradigm slots are available to the speaker,
there are several possibilities for how speakers choose between them. Speakers may
preferentially select the bare stem due to its privileged unmarked status (e.g. Kurylowicz
& Winters 1947; Manczak 1957). They might also select the member of the paradigm
with the highest token frequency (Manczak 1980, p. 284-285).

Following Albright (Albright 2002a,b, 2010, etc.), I propose that learners select the
(available) member of the paradigm that is most informative. A paradigm slot is informa-
tive in the sense of being able to predict other paradigm slots with high accuracy, on the
basis of statistical regularities. Where available paradigm slots are equally informative,
other factors (such as frequency and markedness) may then come into play; this idea is

discussed in Albright (2008).
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2.2.4 Probabilistic UR-SR mappings

Throughout the examples discussed so far, I have assumed that each UR has just one
corresponding SR, so learning probabilities over observed surface forms is equivalent to

learning probabilities over URs.

In tableau (9), for example, each UR has just one corresponding SR. This is true for
the devoicing example and more generally for the case studies I consider in the following
chapters. However, languages often have gradience that causes the same underlying
sound (in the same context) to have variable surface realizations (e.g. see Zuraw & Hayes
2017 for three case studies). In other words, the phonological grammar generates a

probability distribution over SRs for each UR.

When there are variable surface realizations for the same UR, learning becomes more
complex. For example, supposed that a in our toy language, underlying intervocalic /d/
sometimes surfaces as [t]. Model inputs would look like in (20); this tableau is the same
as (19) except for the addition of candidate (b), where underlying /d/ is realized as [t].
This candidate violates standard I0-faithfulness constraints such as IDENT-IO[voice], and

also incurs violations of the relevant UR Inference constraints.

(20) UR inference model: multiple SRs

B

~ Na)

g3 S| g | &
[ R NN BN [E >
® 0w L MElE
[CVt] + [a] SR Obs | = | =2 |=|= | B |*%
a. /CVt-a/ [CVta] [CVta] 7 1 1 1
b. /CVd-a/ [CVta] 1 1 1|1

c. /CVd-a/ [CVda] [CVda] 3 1 1

d. /CVm-a/ [CVma] || [CVma] 0 1 1 1 1

The model still learns probabilities over observed SRs, but now these values are summed

over multiple UR candidates. In particular, the SR [CVta] can correspond to either can-

36



didate (a) or candidate (b). The resulting hidden structure means that the search space is

no longer convex and optimization is not guaranteed to converge on the optimal solution.

2.2.5 Sources of competing URs

UR inference occurs only when learners have incomplete access to a paradigm. Presum-
ably, learners can then list the newly inferred UR and use it for deriving surface forms.

However, this process implies that learners could end up with multiple listed URs.

For example, a leaner could infer a UR that differs from the one adopted by the general
speech community. They may therefore receive subsequent input that resolves structural
ambiguities in a paradigm, but conflicts with the listed UR. For example, a learner might
infer a UR /pat/ for rabbit, but then hear the suffixed form [pada], which tells them that
the UR is in fact /pad/. As a result, the learner’s grammar now has two competing listed

URs.

UR inference is also tied to the paradigm slot that the speaker is trying to produce, and
to the markedness properties of the derived output form in that paradigm slot. As a result,
model predictions may differ depending on the paradigm slot that a learner is trying
to produce. For example, suppose that our toy language has two suffixes, respectively
vowel-initial /-a/ ‘PLURAL’ and consonant-initial /-ka/ ‘DIMINUTIVE’. If a speaker were
trying to infer a UR for |RABBIT + PL|, the non-alternating candidate /pat-a/ [pata] would
violate *VTV. If they were instead inferring the UR for |RABBIT + DIM|, the non-alternating

candidate /pat-ka/ [patka] incurs no violations of *VTV.

The consequences of this contrast is illustrated in tableau (21). This current tableau
shows model predictions for two inputs, |pat+a| and |pat+ka|. The model was trained
on our toy lexicon, with a bias towards high weight for *VTV; constraint weights are
taken from (19). Crucially, candidate (a) and (d) both have an underlying stem-final /t/,
but (a) incurs a violation of *VTV while (d) does not. Because *VTV has non-zero weight,

candidate (a) is assigned a lower predicted probability than candidate (d).
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(21) Predicted URs across different suffixal environments
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|RABBIT, [pat]| + |pL,[a]

a. /pat-a/ [pata] 1 1 5.66 | 0.67
b. /pad-a/ [pada] 1 1 6.39 | 0.32
c. /pam-a/ [pama] 1 1 1 10.67 | O
|RABBIT, [pat]| + |DIMm,[ka]]

d. /pat-ka/ [patka] 1 4.28 | 0.89
e. /pad-ka/ [padka] 1 1 6.39 | 0.11
f. /pam-ka/ [pamka] 1 1 1 10.67 | O

One way to account for competing listed URs is to encode each UR with a gradient
‘memory strength’. This idea is explored in Moore-Cantwell & Pater (2016). Essentially,
each UR is associated with a representational strength, which in MaxEnt can be encoded as
the weight of a lexically-specific UR constraint (e.g. RABBIT = /pat/ and RABBIT = /pad/).
The memory strength of each UR decays over time, but will increase if the learner en-
counters input data associated supporting this UR. For our ‘rabbit’ example, if the learner
encounters the diminutive form of rabbit more than the plural, they might learn a stronger

representation for /pat/ than /pad/.

2.2.6 Alternative approaches

The UR inference approach described in this section is able to capture statistical patterns
within a paradigm, while also accounting for ‘global’ phonotactic markedness effects via
a bias term. In essence, learners infer fully specified URs when undoing structural ambi-
guity in a paradigm. In this section, I discuss two alternative approaches, where URs are

either underspecified or not posited for incomplete paradigms.
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As previewed above, the choice of implementation is not central to my arguments;
both alternatives are able to capture the interaction of frequency-matching and marked-
ness bias. Nevertheless, I will argue that UR inference is a more accurate reflection of

how reanalysis works, and that the two alternatives make undesirable predictions.

The first alternative to a UR inference analysis, formalized by Albright (2002b), is to
assume surface representations. In other words, the model is trained on surface forms
which serve as the base of reanalysis. The Minimal Generalization Learner (MGL Al-
bright & Hayes 2003) is a rule-based implementation of this idea. Additionally, many
models of wug test results (which, like reanalysis, addresses how learners ‘fill’ incom-
plete paradigms) do not make use of underlying representations, and therefore implicitly
assume a surface-base account (e.g. Albright & Hayes 2003; Ernestus & Baayen 2003;
Calderone et al. 2021).

In a constraint-based framework, the surface-base approach can be modeled by using
a surface slot of the paradigm as the input; candidates are possible allomorphs of the
paradigm slot that the learner is trying to derive. In our toy language, the input would be
forms like [bet] ‘cat’ and [mot] ‘dog’, while candidate outputs are possible suffixed form

allomorphs ([bet-a], [bed-a], [mot-a], [mod-a]).

This approach is illustrated in tableau (22). The tableau assumes a simplified 10-word
lexicon where [t]~[d] alternation occurs in 3 forms (i.e. 30% of the time). Therefore,
for [t] final input stems (written as [CVt]), the output candidate [CVt-a] has an observed
frequency of 3, whi