Prosodic correspondence in Tgdaya Seediq insights from corpus and experimental evidence

Jennifer Kuo, Cornell University

Selected Slides

Research overview

- Phonological learning. How do people learn and represent sound patterns?
- Structure of paradigms. How do related words influence each other, and how do people encode the relationship between forms of a paradigm?

Corpora

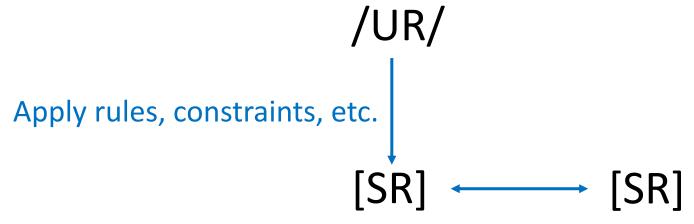
Grabowski & Kuo (2023), Kuo (2023b)

Experimental evidence

Kuo (2023a)

Fieldwork (Seediq, Mam)

Grabowski & Kuo (2023), Elkins & Kuo (2022)


Modeling

Kuo (2020; 2023b)

Today: insights about paradigm structure from Tgdaya Seediq

UR-SR relations

 Typically, models of phonology derive surface representations (SR) from underlying representations (UR)

 There is evidence that related surface forms within a paradigm can influence each other, challenging this view.

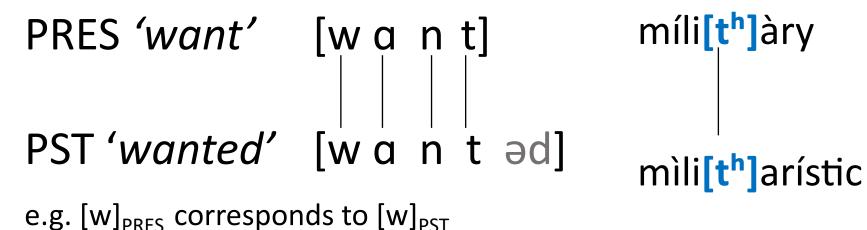
Similarity across a paradigm

- Surface forms in a paradigm (i.e. across grammatical contexts) tend to be similar.
 - Example: English past tense

```
wantwant-edspeakspoke(n=6)waitwait-edvs.strikestruck(n=16)planplann-edgivegave(n=1)......
```

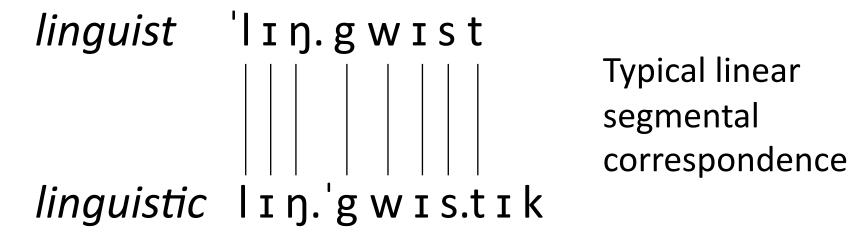
N=1146 (93%)

Generalizations from the CELEX database, taken from Albright and Hayes (2003)


Similarity across a paradigm

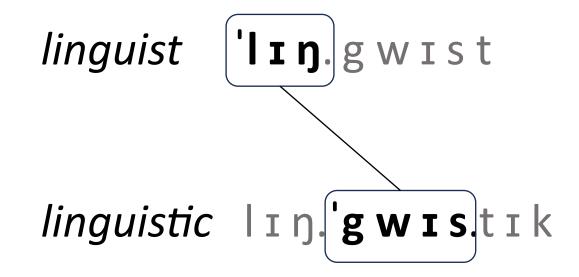
- In fact, surface forms in a paradigm (i.e. across grammatical contexts) can influence each other.
- Example: English aspiration vs. flapping (Withgott 1983)

```
<militaristic> mìli[th]arístic (cf. míli[th]àry)
<capitalistic> càpi[r]alístic (cf. cápi[r]al)
```


How do we formalize this generalization?

- Correspondences between related forms (Benua 1995; McCarthy & Prince 1995)
 - typically assume a linear, 1:1 relationship between segments.

Can non-linear correspondences exist?


 Crosswhite (1995) proposes prosodic correspondence, where stressed syllables of related words correspond to each other

Typical linear

Can non-linear correspondences exist?

 Crosswhite (1995) proposes prosodic correspondence, where stressed syllables of related words correspond to each other

Prosodic correspondence

Can non-linear correspondences exist?

- Crosswhite (1995) proposes prosodic correspondence, where stressed syllables of related words correspond to each other
- Very little empirical evidence to date
 - one case from Chamorro.

Goals of the talk

- 1. Present evidence for prosodic correspondence from Tgdaya Seediq.
- 2. Demonstrate the usefulness of looking at
 - probabilistic patterns
 - experimental evidence

.... when asking questions about phonological representation.

3. Present a preliminary model of how Seediq speakers learn prosodic correspondence

Outline of talk

Intro

Descriptive facts of Seediq

Corpus

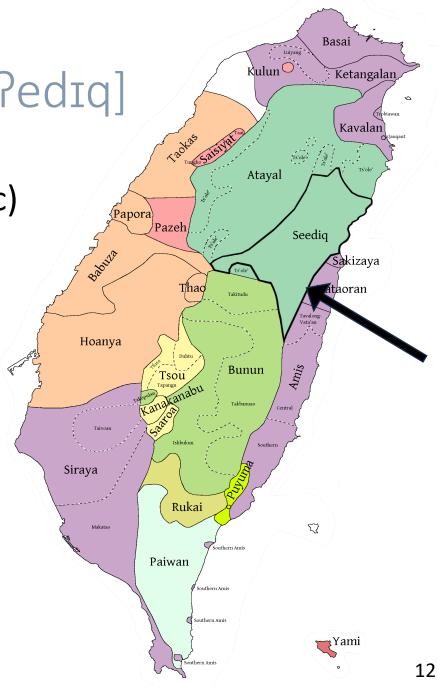
Evidence for a gradient prosodic corr. effect

Experiment

Results of a wug test supporting these findings

Modeling

A model of how speakers can learn and extend pros. corr


Tgdaya Seediq [tugu'daya se'?edɪq]

a dialect of Seediq (Austronesian, Atayalic)

Located in central Taiwan

~2,500 members including non-speakers

critically endangered

Phoneme inventory

- 5 vowels /a e i o u/
- Consonants:

Stops	pb	t d		kg	\overline{q}	?
Fricatives		S		\boldsymbol{x}		h
Affricates		c [\hat{ts}]				
Nasals	m	n		ŋ		
Approximants		$r\left[\mathbf{f} ight]$	y [j]	W		
Laterals		1				

Vowel alternations in Seediq

- Stress is always penultimate
 - written with acute accent on stressed vowel
 - e.g. [**pé.**mux]
- Extensive stress-driven vowel alternations

Vowel alternations in Seediq (Yang 1976)

• Pretonic vowel reduction: before the stressed syllable, all vowels become [u]*

UR	stem	suffixed	gloss
/gedaŋ/	g <u>é</u> daŋ	g <u>u</u> dáŋ-an	'die'
/biciq/	b <u>í</u> ciq	b <u>u</u> cíq-an	'decrease'
/barah/	b <u>á</u> rah	b <u>u</u> ráh-an	'rare'

Sample derivation

UR	/g <u>e</u> daŋ-an/
Stress	g <u>e</u> dáŋan
pretonic V→[u]	g <mark>u</mark> dáŋan
SR	[g <mark>u</mark> dáŋan]

^{*}simplifying a bit here; feel free to ask me in the Q&A!

Vowel alternations in Seediq

• Post-tonic vowel reduction: after the stressed syllable, /e/ and /o/ become become [u].

UR	stem	suffixed	gloss
/rem <u>u</u> x/	rém <u>u</u> x	rum <u>ú</u> x-an	'enter'
/pem <u>e</u> x/	pém <u>u</u> x	pum <u>é</u> x-an	'hold'
/kod <u>o</u> ŋ/	kód <u>u</u> ŋ	kud <mark>ó</mark> ŋ-an	'hook'

 In other words, post-tonic [u] can alternate with [e] or [o]

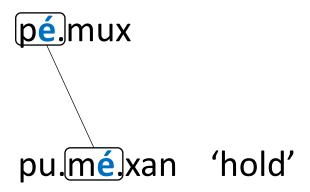
Sample derivation

UR	/pem <u>e</u> x/
Stress	pém <u>e</u> x
pret. V→[u]	
post. /e,o/→[u]	pém <u>u</u> x
SR	[pém <u>u</u> x]

Vowel alternations in Seediq

- As a result of these two processes, surface forms within a paradigm can look very different.
- Some more examples...

stem	suffixed	gloss
h á ŋ u c	h u ŋéd-an	'cook, boil'
m <mark>álu</mark>	m <mark>ulé</mark> (j)-an	'able to'
dóʔ u s	doʔ <mark>ó</mark> s-an	'refine' (metal)'


Prosodic correspondence in Seediq

• For stems which undergo post-tonic VR, there is a strong tendency for stressed vowels of stem and suffixed forms to match.

stem	suffixed	gloss	© Stressed Vs match
pémux	puméx-an	'hold'	
kóduŋ	kudóŋ-an	'hook'	
h <mark>á</mark> ŋuc	huŋ <mark>é</mark> d-an	'cook, boil'	Stressed Vs mismatch
r é mux	rum ú x-an	'enter'	

Prosodic correspondence in Seediq

• Evidence for prosodic correspondence (i.e. pressure for stressed syllables within a paradigm to be similar to e/o)

Outline of talk

Intro

Descriptive facts of Seediq

Corpus

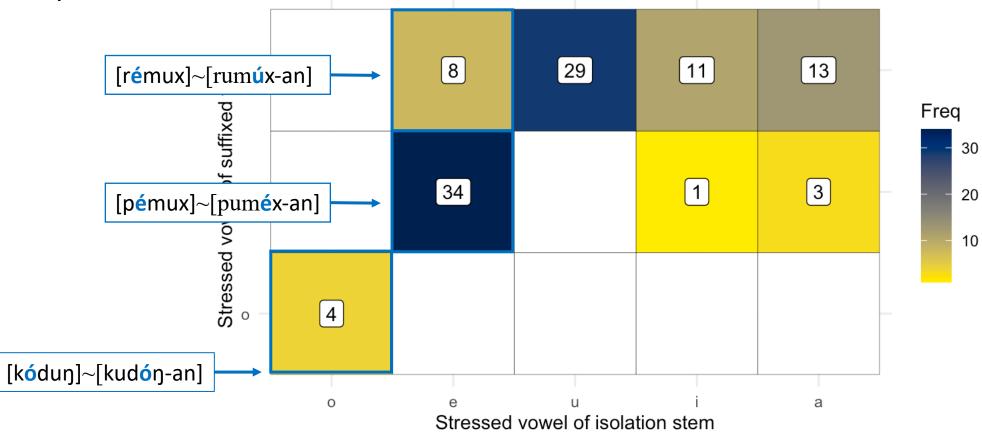
Evidence for a gradient prosodic corr. effect

Experiment

Results of a wug test supporting these findings

Modeling

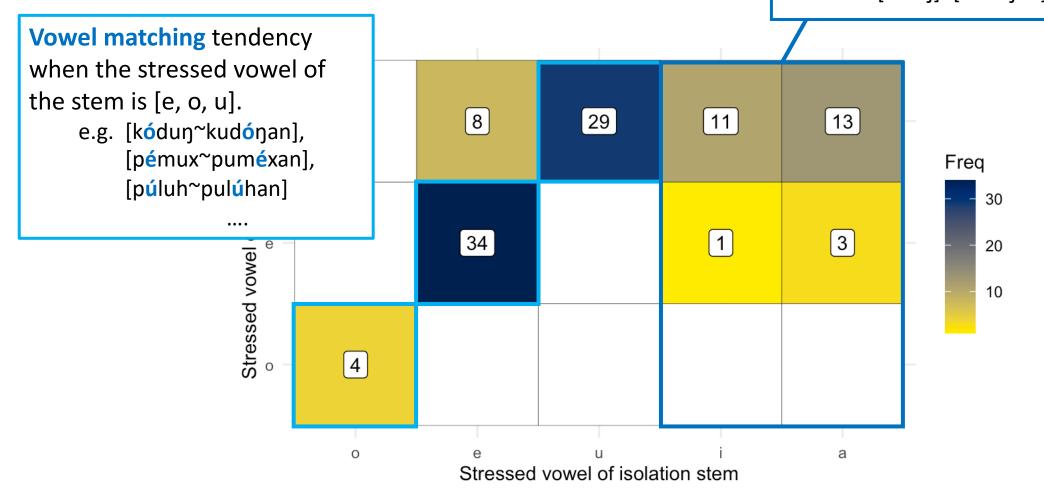
A model of how speakers can learn and extend pros. corr


Data

- 341 verbal paradigms (stem-suffix pairs)
 - Taiwan Aboriginal e-Dictionary (Council of Indigenous Peoples 2020)
 - fieldwork with three Seediq speakers (ages 69-78), carried out in Puli Township, Nantou, Taiwan.

Vowel matching in Seediq

Figure: Stressed vowel in stem vs. suffixed form, in words that undergo


post-tonic VR.

Vowel matching in Seediq

Otherwise, there is a preference for **non-alternation**.

e.g. [gátuk]~[gutúkan], [híluŋ]~[hulúŋan]

Another way of looking at the data...

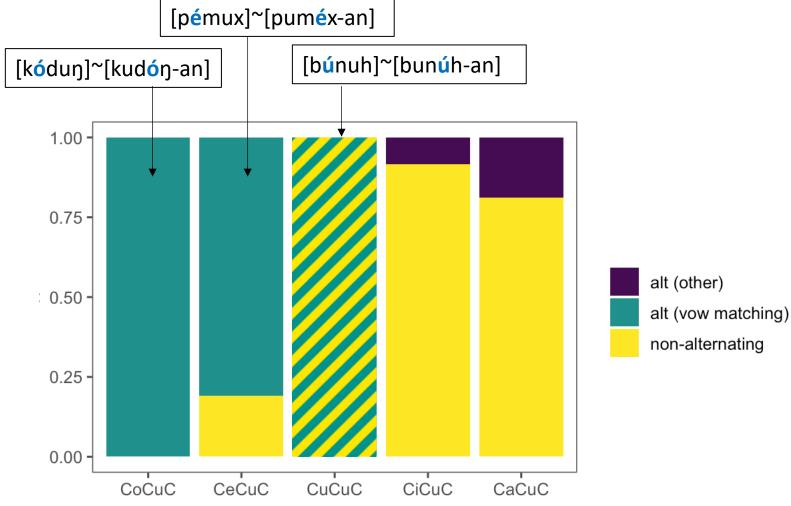


Figure: Proportion of alternating suffixed forms for CVCuC stems

Psychological reality of prosodic correspondence

- So far, it seems like vowel matching exists as a gradient tendency in the lexicon.
- But it is psychologically real?

Outline of talk

Intro

Descriptive facts of Seediq

Corpus

Evidence for a gradient prosodic corr. effect

Experiment

Results of a wug test supporting these findings

Modeling

A model of how speakers can learn and extend pros. corr

Method: wug test (Berko 1958)

- Tests whether speakers have generalized productive grammars from the lexicon.
- Present participants with nonce words of their native language
- ...and ask them to apply a morphological rule (e.g. plural formation)

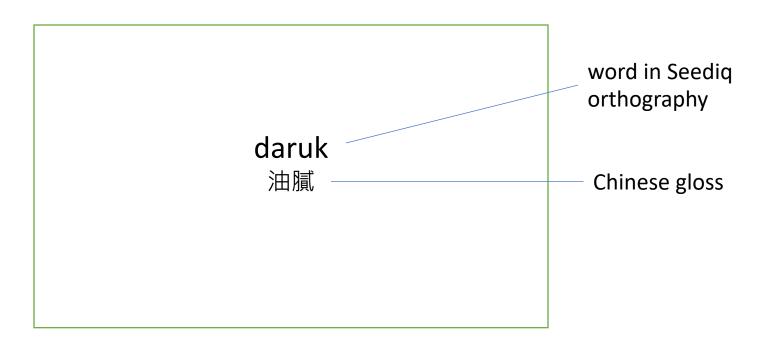
Method: wug test (Berko 1958)


- Tests whether speakers have generalized productive grammars from the lexicon.
- Present participants with nonce words of their native language
- ...and ask them to apply a morphological rule (e.g. plural formation)

'gapped' stems, i.e. ones with no known suffixed forms

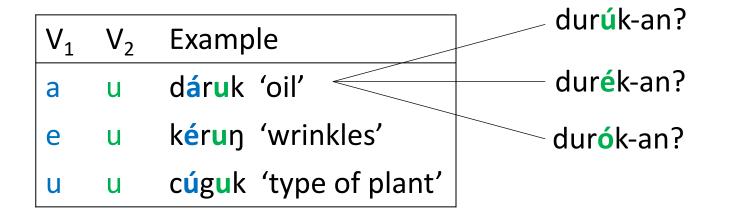
This is a Wug.

Now there is another one.


There are two of them.

There are two ____.©

Photo courtesy of Jean Berko Gleason


Methods cont.

- Participants: adult native speakers (N=10, 7F, ages 45-76).
- **Procedure**: Speakers were shown test items, and asked to produce them with two suffixes: /-an/ 'LF' & /-i/ 'PF.IMP'

Stimuli

• 'gapped' stems of the form CV_1CV_2C ; $V_1 = \{a,e,u\}$, $V_2 = \{a,u\}$

Stimuli

- 'gapped' stems of the form CV_1CV_2C ; $V_1 = \{a,e,u\}, V_2 = \{a,u\}$
- 72 items (6x8 test items + 24 fillers)

V_1	V_2	Example	
а	u	dáruk 'oil(y)'	Control: [a] should
e	u	k é ruŋ 'wrinkles'	be non-alternating
u	u	cúguk 'type of plant'	sub á k-an
а	a	sábak 'dregs, pulp'	subék-an
e	a	réhak 'seed'	suhák-an
u	a	s ú wak 'yawn'	Sabok an

Predictions

Possible outcomes:

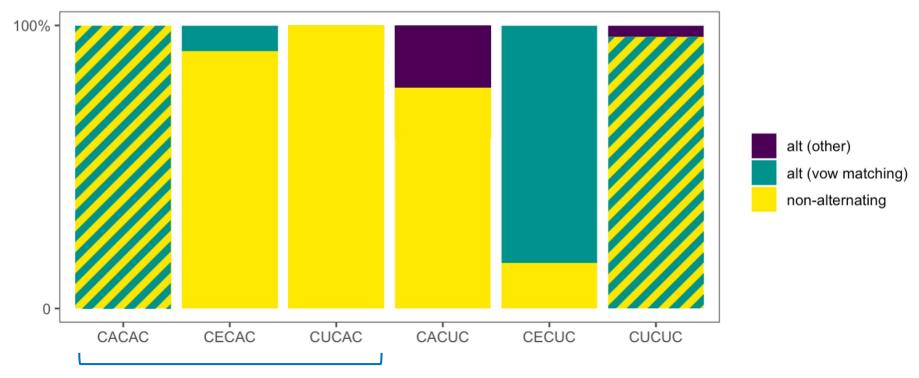
• No pattern internalized: no vowel alternations.

V_1	V_2	Example	Outcomes: non- alternation
a	u	dáruk	dur ú k-an
e	u	kéruŋ	kur ú ŋ-an
u	u	cúguk	cug ú k-an
a	a	sábak	sub á k-an
e	а	réhak	ruh <mark>á</mark> k-an
u	a	s ú wak	suw á k-an

Predictions

Vowel matching alternation

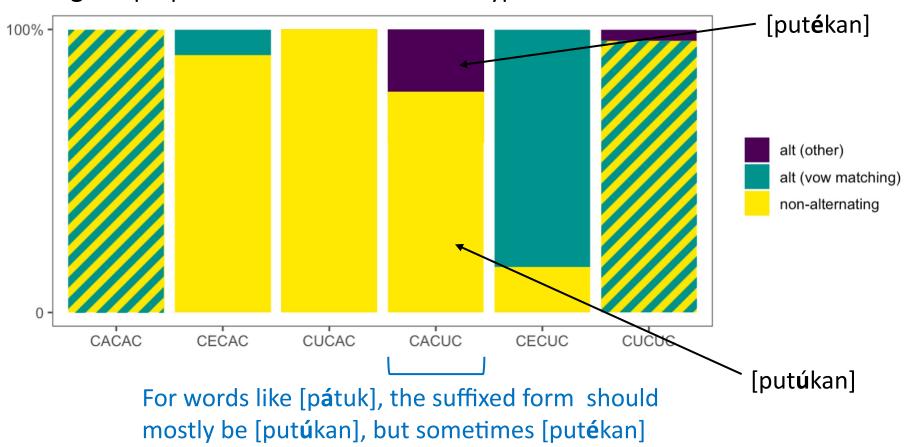
Possible outcomes:


- No pattern internalized: no vowel alternations.
- Frequency-matching: apply alternations in a way that matches their rate in the lexicon.

For more examples of frequencymatching: Zuraw 2000, Ernestus & Baayen 2003, Hayes & Londe 2006; Zuraw 2010

			Outcomes:
V_1	V ₂	Example	freq. matching
a	u	dáruk	mostly dur ú k-an
е	u	kéruŋ	mostly kuréŋ-an
u	u	cúguk	always cug <mark>ú</mark> k-an
a	a	sábak	sub <mark>á</mark> k-an
e	a	réhak	ruh <mark>á</mark> k-an
u	a	s ú wak	suw <mark>á</mark> k-an

Frequency matching predictions


Figure: proportion of vowel alternation types in the lexicon

Post-tonic [a] should be non-alternating

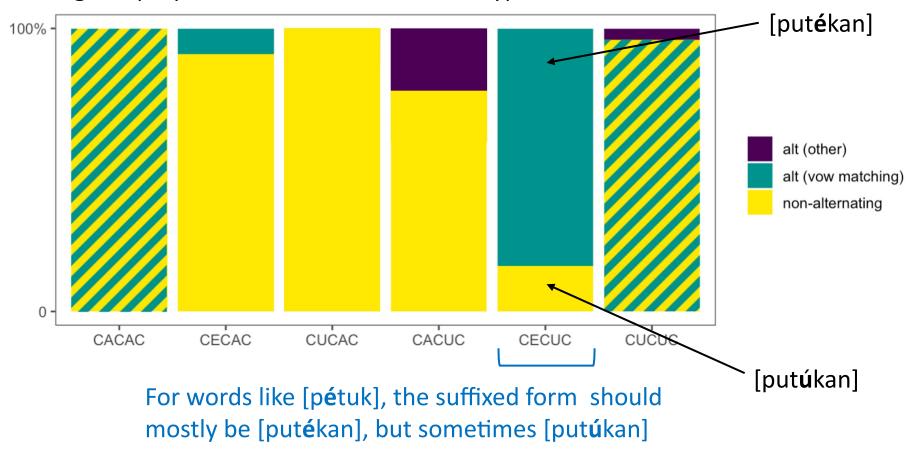

Frequency matching predictions

Figure: proportion of vowel alternation types in the lexicon

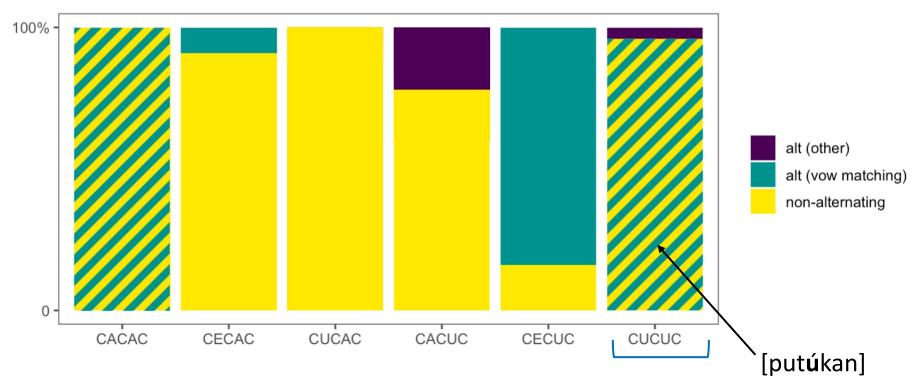

Frequency matching predictions

Figure: proportion of vowel alternation types in the lexicon

Frequency matching predictions

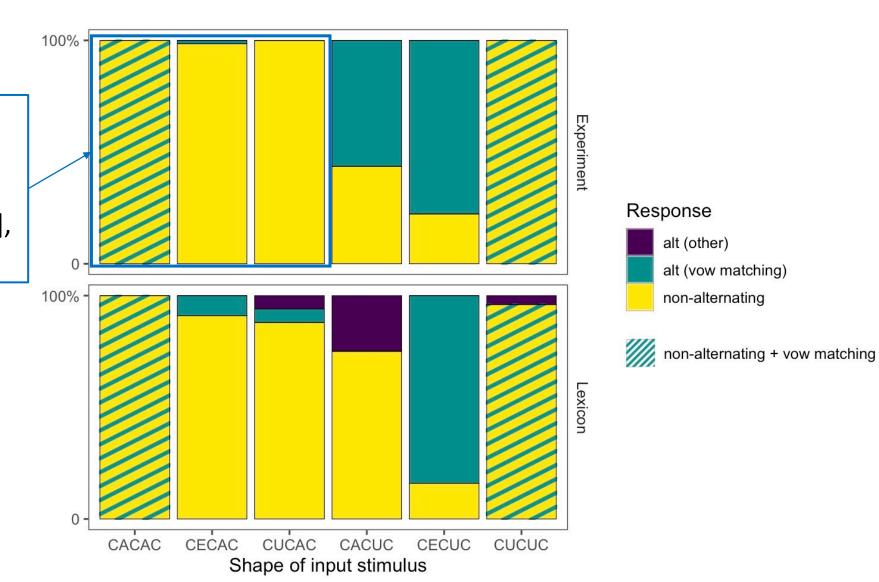
Figure: proportion of vowel alternation types in the lexicon

For words like [pútuk], the suffixed form should mostly/always be be [putúkan]

Predictions

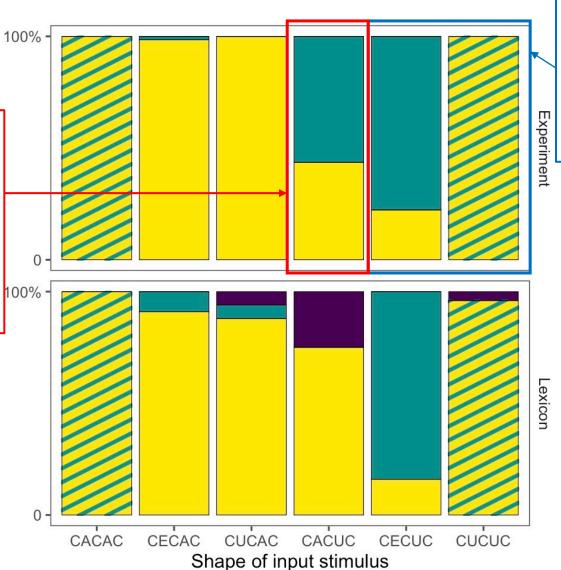
not observed in the lexicon

Possible outcomes:


- No pattern internalized: no vowel alternations.
- Frequency-matching: apply alternations in a way that matches their rate in the lexicon.
- Overlearning: apply vowel matching alternations more than predicted by the lexicon.

			Outcomes:
V_1	V_2	Example	vow matching
а	u	dáruk	durák-an??
e	u	k é ruŋ	kur é ŋ-an
u	u	c <mark>úgu</mark> k	cug <mark>ú</mark> k-an
a	a	sábak	sub <mark>á</mark> k-an
e	a	réhak	ruh <mark>á</mark> k-an
u	a	s ú wak	suw á k-an

Results


As expected, posttonic [a] is nonalternating.

[pútak]→[putákan],
never *[putúkan]

Results

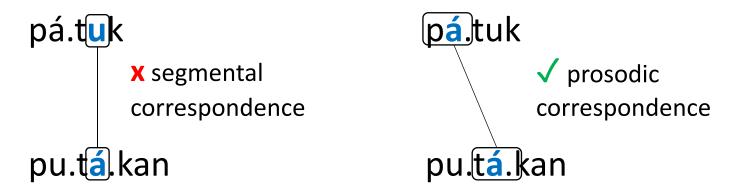
For CaCuC words, speakers are applying a new **vowel-matching** alternation that is **not** observed in the lexicon. e.g. [pátuk] \rightarrow [putákan]

For CeCuC and CuCuC words, speakers are frequency-matching.

[pétuk] \rightarrow [putékan] (~80%)

→ [putúkan] (~20%)

alt (other)


alt (vow matching)

non-alternating

non-alternating + vow matching

Interim summary

- Vowel matching is present in Seediq both as
 - trend in the lexicon
 - an active principle in wug tests
- Evidence for prosodic correspondence (pressure for stressed syllables within a paradigm to be similar)
- In fact, prosodic correspondence overrides segmental correspondence

Interim summary, cont.

- Unresolved issue: how do we model the learning of vowel matching?
 - Lexicon: vowel matching on [pétus], [pótus], [pútus]
 - Learned pattern: vowel matching overgeneralized to [pátus]
- Difficult, as learning models are generally frequency-matching

Outline of talk

Intro

Descriptive facts of Seediq

Corpus

Evidence for a gradient prosodic corr. effect

Experiment

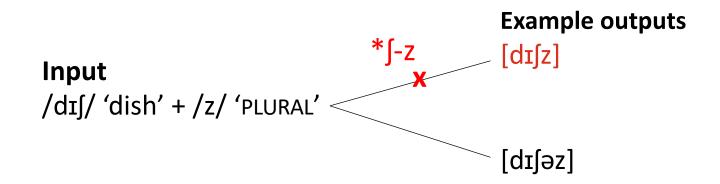
Results of a wug test supporting these findings

Modeling

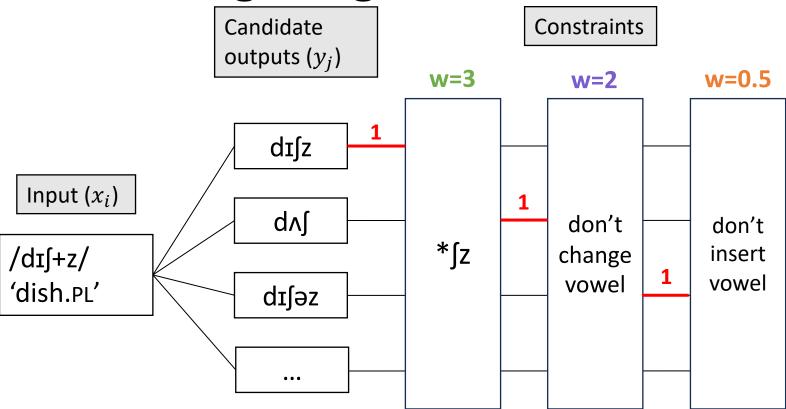
A model of how speakers can learn and extend pros. corr

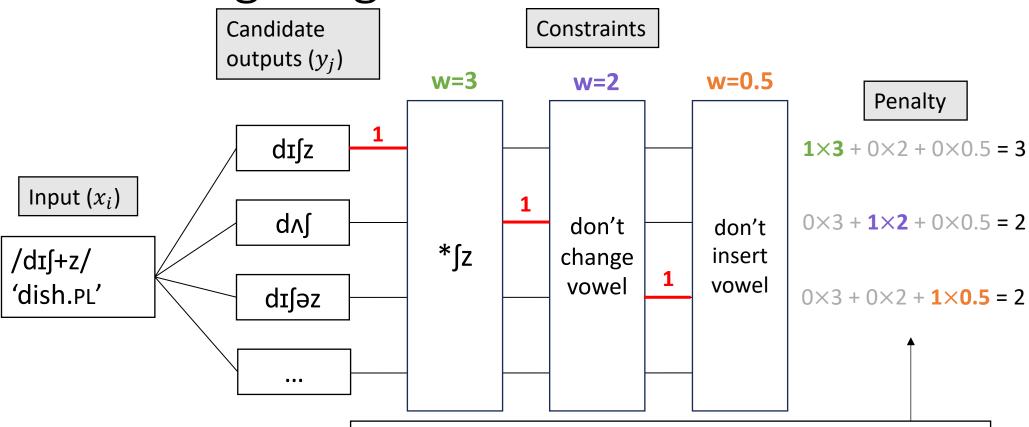
Proposal: generality bias

People are biased to learn more general patterns (Moreton & Pater 2012)

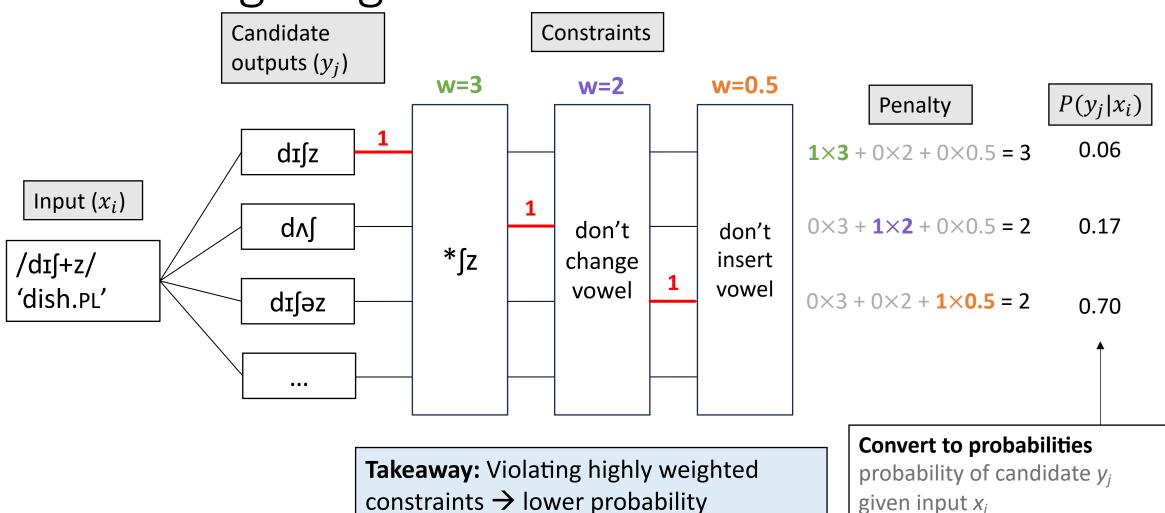

"Vowels match" vs. "Vowels match, if they are mid vowels"

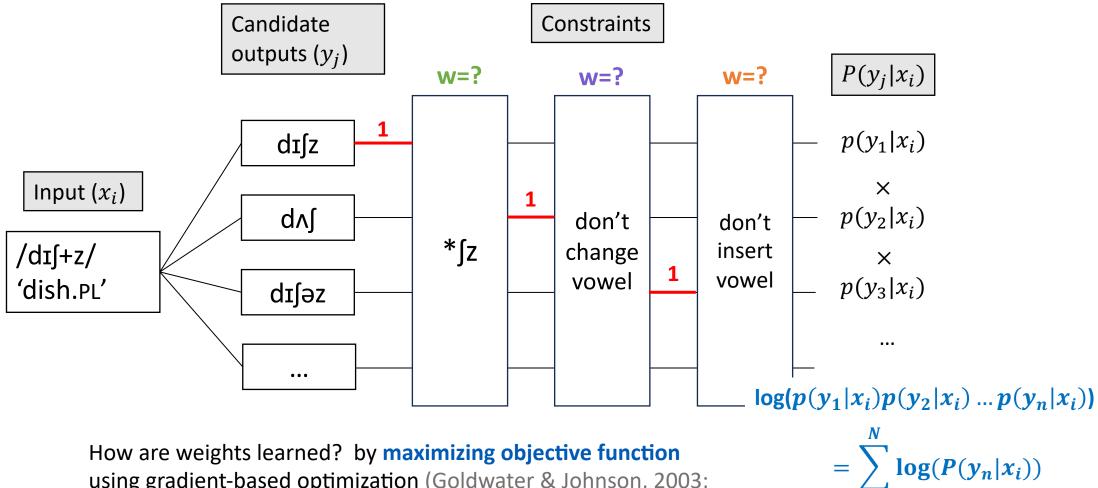
- Modeling: test this hypothesis
 - Goal: model that when trained on the lexicon, can predict the experimental results
 - **Preview**: generality bias improves model predictions

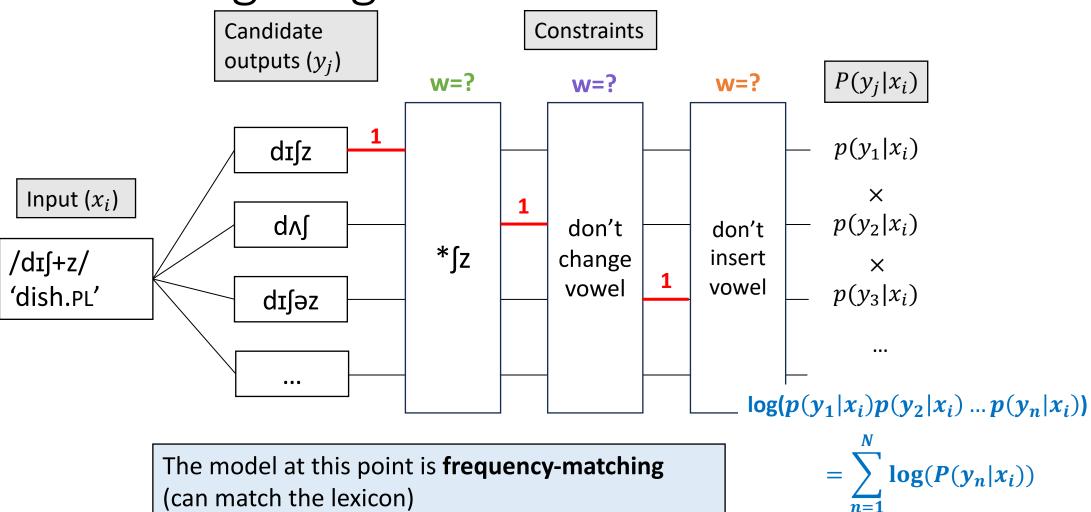

Elements of the model


- A probabilistic phonological grammar
- Ability to incorporate generality bias

- Basic idea: the grammar has...
 - A mechanism for generating candidate outputs given an input
 - A series of constraints on the output (Optimality Theory; Prince & Smolensky 1993/2004)
- Ex: In English, a "sh" [ʃ] followed by [z] is not allowed (*∫-z)




- The grammar also needs to be probabilistic
 - Maximum Entropy Harmonic Grammar (Smolensky 1986; Goldwater & Johnson, 2003)
 - probabilistic version of Optimality Theory
 - = multinomial logistic regression



Constraints are weighted, and each candidate receives a penalty score that is the **weighted sum** of all its constraint violations.

using gradient-based optimization (Goldwater & Johnson, 2003; Lafferty et al., 2001; McCallum, 2003)

Now let's apply this to Seediq!

Specific vowel matching constraint

MATCHV-MID	if the stressed syllable of the the base is a mid vowel, the stressed
	syllables of the base and output must correspond to each other and
	share the same vowel. (base = unsuffixed stem form)

MATCHV the stressed syllables of the base and output must correspond to each other and share the same vowel.

IDENT-OO-V if two vowels correspond segmentally, they must be the same

(simplifying a bit, and ignoring some complications...)

MATCHV-MID if the stressed syllable of the input is a mid vowel, the stressed

syllables of the input and output must correspond to each other and

share the same vowel.

General vowel matching constraint

MATCHV the stressed syllables of the base and output must correspond to

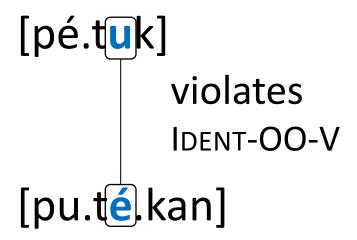
each other and share the same vowel.

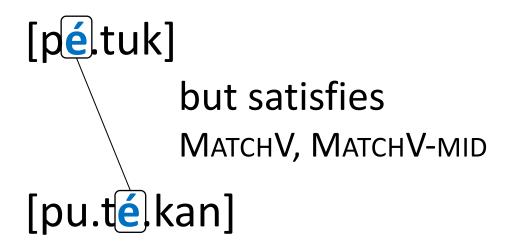
IDENT-OO-V if two vowels correspond segmentally, they must be the same

(simplifying a bit, and ignoring some complications...)

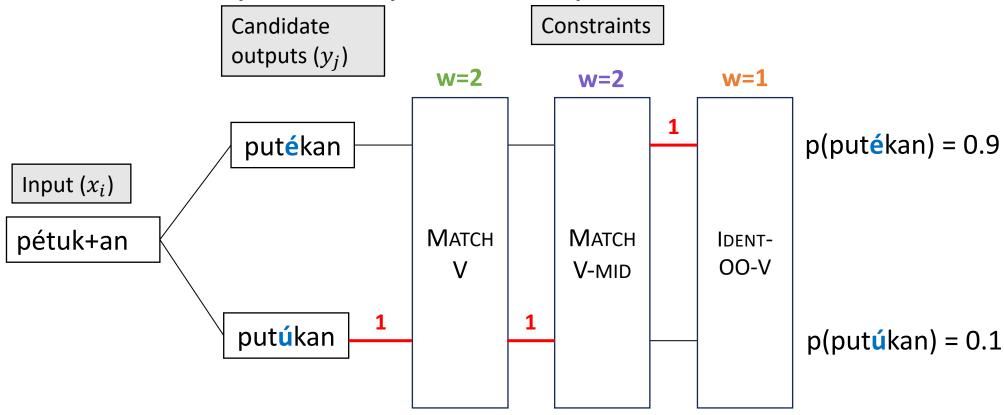
if the stressed syllable of the input is a mid vowel, the stressed MATCHV-MID

syllables of the input and output must correspond to each other and

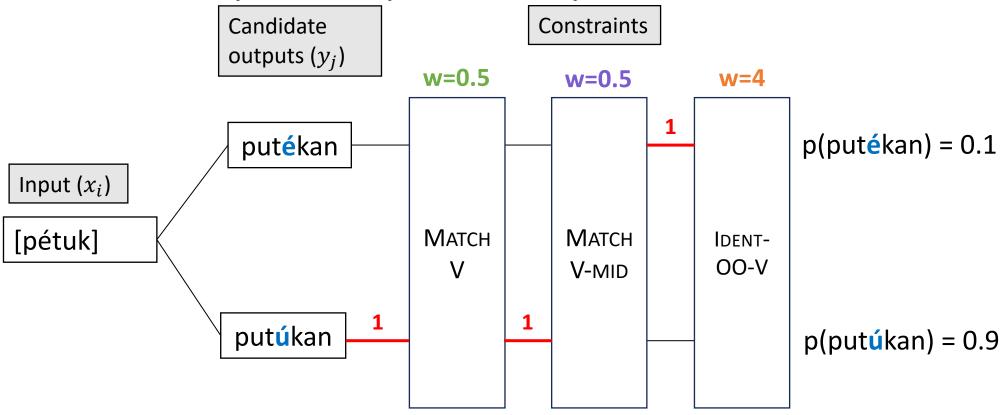

share the same vowel.


MATCHV the stressed syllables of the base and output must correspond to

each other and share the same vowel. penalizes changes between *segmentally* corresponding segments

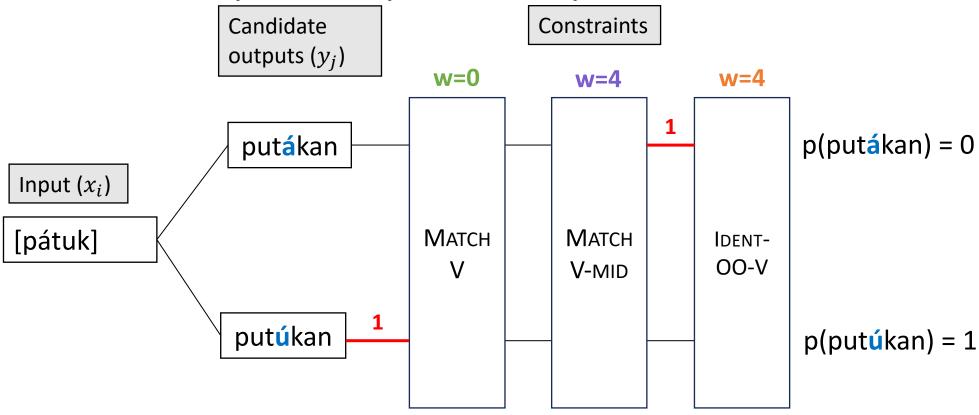

IDENT-OO-V if two vowels correspond segmentally, they must be the same

(simplifying a bit, and ignoring some complications...)


A Seediq example (simplified)

If w(MatchV, MatchV-mid) > w(IDENT-V), the grammar will prefer [putékan]

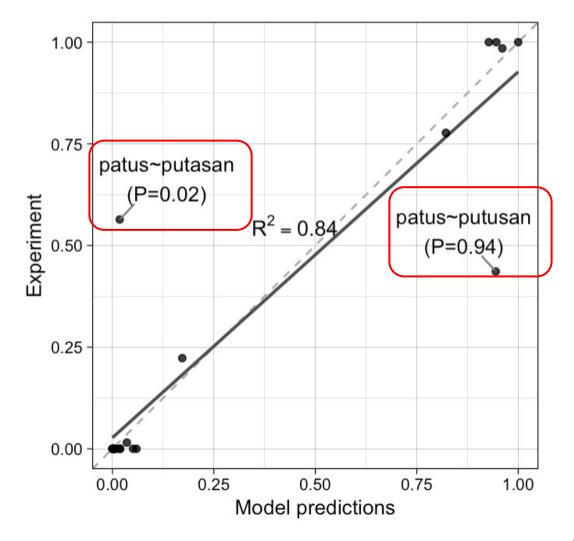
If w(IDENT[voice]) > w(*VTV), the grammar will prefer [pakut-ana]


A Seediq example (simplified)

If w(MatchV, MatchV-mid) > w(IDENT-V), the grammar will prefer [putékan]

If w(IDENT-V) > w(MATCHV, MATCHV-MID), the grammar will prefer [putúkan]

A Seediq example (simplified)


For inputs like [pátuk], vowel-matching alternations happen only if the weight of MATCHV is high (MATCHV-MID doesn't apply)

Results-model with no generality bias

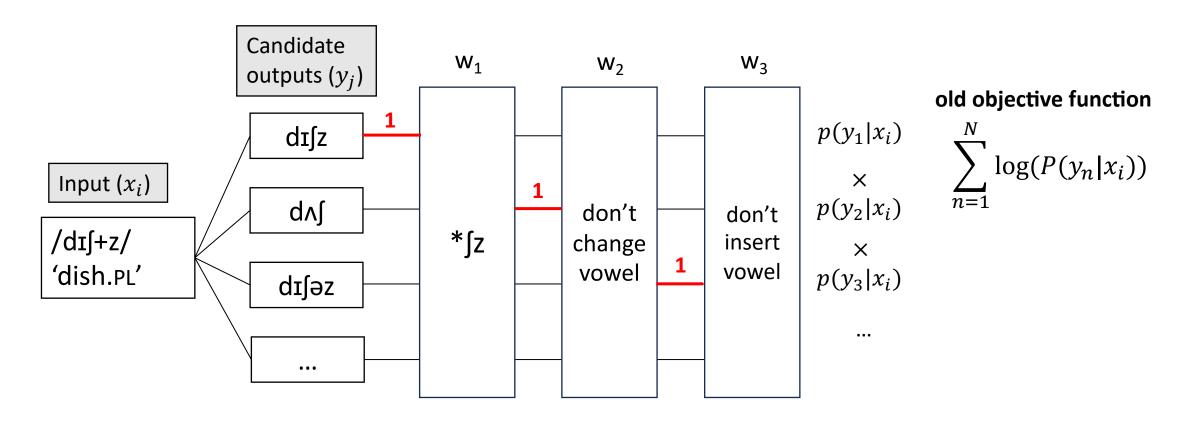
- Model is frequency-matching...
 - but underpredicts
 [pátuk]~[putákan] type
 responses

• Reason:

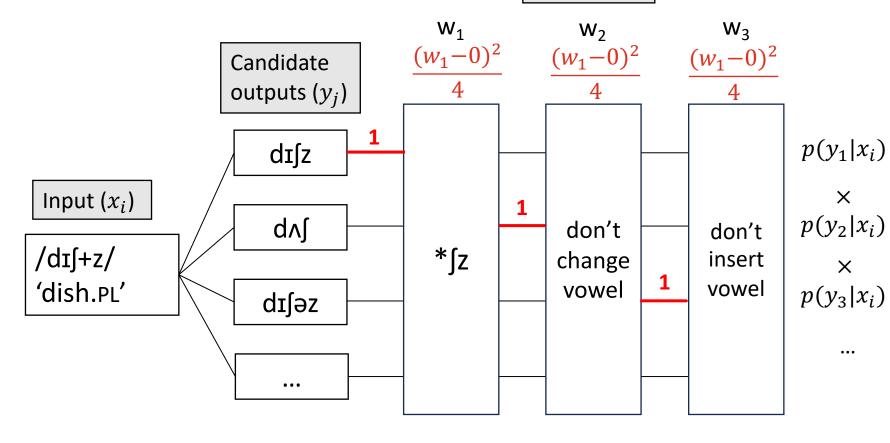
- [patuk]~[putákan] not observed in the lexicon (model input).
- Model assigns high weight to MATCHV-MID, but near-zero weight to MATCHV

Elements of the model

- A probabilistic phonological grammar
- Ability to incorporate generality bias


To implement a bias, we can give the model a **Gaussian prior** (Wilson 2006; Martin 2011; White 2013)

Functionally equivalent to L2 regularization


Each constraint weight w is associated with a Gaussian distribution with, mean (μ)=0 and a standard deviation (σ)=1.

$$\frac{(w_m-\mu)^2}{2\sigma^2} \qquad \frac{(w_m-0)^2}{4}$$

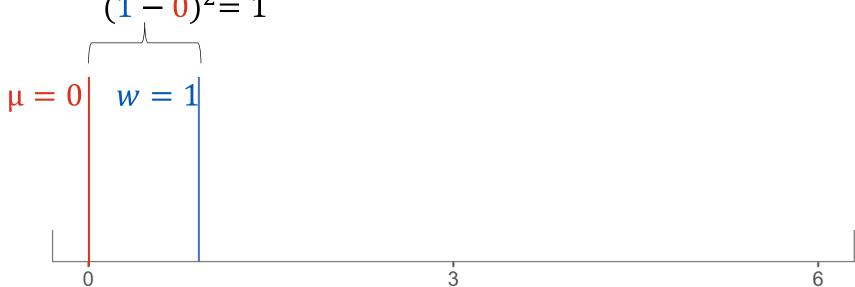
Constraints

Constraints

new objective function

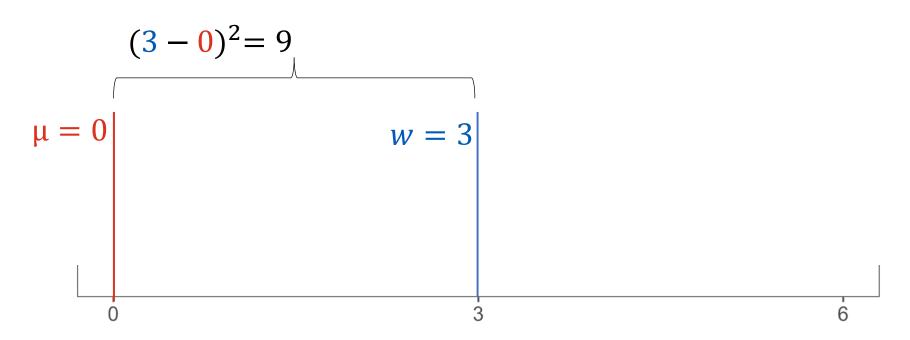
$$\sum_{n=1}^{N} \log(P(y_n|x_i)) - \sum_{m=1}^{M} \frac{(w_m - 0)^2}{4}$$

X


X

The bigger this value, the bigger the penalty.

- As a result of this prior, the grammar will prefer to assign constraints uniform, low weights...
 - instead of assigning a lot of weight to one constraint
- Result: weight more evenly spread across MATCHV and MATCHV-MID


low weight = low penalty

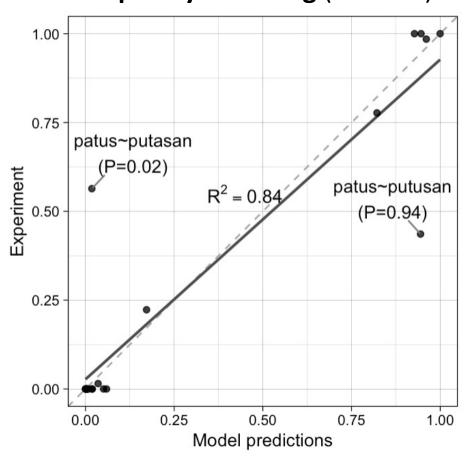
$$Prior = \frac{(w_m - 0)^2}{4} \qquad \begin{array}{l} w = \text{constraint weight} \\ \mu = \text{``preferred'' weight} \end{array}$$

$$(1 - 0)^2 = 1$$

high weight = exponentially higher penalty

Prior =
$$\frac{(w_m - 0)^2}{4}$$
 μ = constraint weight μ = "preferred" weight

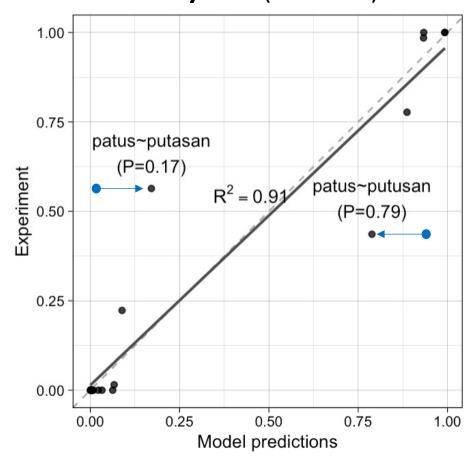
high weight = exponentially higher penalty


$$Prior = \frac{(w_m - 0)^2}{4} \qquad \begin{array}{l} w = \text{constraint weight} \\ \mu = \text{"preferred" weight} \end{array}$$

$$(6 - 0)^2 = 36$$

$$w = 6$$

Elements in a phonological model


- 1. A probabilistic phonological grammar ✓
- 2. Ability to incorporate generality bias ✓

Results

Frequency matching (R²=0.84)

Generality bias (R²= 0.91)

Conclusion

- Seediq has a tendency towards vowel matching
 - where stressed vowels of related surface forms match each other.
 - **psychological reality:** productively applied to new words, and overgeneralized beyond what is observed in the lexicon.
- How do we explain speakers' over-learning of vowel matching?
 - modeling results suggest a generality bias.

Conclusion

- Why are there so few documented cases of prosodic correspondence?
 - Missed when we look at just UR→SR mappings
 - gradient pattern
- Importance of...
 - looking at the relations between related surface forms
 - looking at gradient phenomena when addressing issues about phonological representation

Thank you! to...

Aking Nawi and other Seediq consultants

Bruce Hayes and Kie Zuraw, members of the UCLA Phonology Seminar, two anonymous reviewers of PDA, and

References

- Albright, Adam & Bruce Hayes. 2003. Rules vs. analogy in english past tenses: A computational/experimental study. Cognition 90(2). 119–161. doi:10.1016/S0010-0277(03)00146-X.
- Berko, Jean. 1958. The child's learning of English morphology. Word 14(2-3). 150–177. https://doi.org/10.1080/00437956.1958.11659661.
- Benua, Laura. 1995. Identity effects in morphological truncation. In S. Urbanczyk & JN. Beckman (eds.), *University of Massachusetts occasional papers 18: Papers in Optimality Theory*, 77–136. Amherst: GLSA.
- Council of Indigenous Peoples. 2020. Online dictionary of aboriginal languages. http://e-dictionary.apc. gov.tw/Index.htm. Accessed: 2020-09-30.
- Crosswhite, Katherine. 1998. Segmental vs. prosodic correspondence in Chamorro. Phonology 15(3). 281–316. https://doi.org/10.1017/S0952675799003619.
- Elkins, N., & Kuo, J. (2023). A prominence account of the Northern Mam weight hierarchy. In Supplemental Proceedings of AMP 2022.
- Ernestus, M.T., Baayen, R.H., 2003. Predicting the unpredictable: Interpreting neutralized segments in Dutch. *Language* 79, 5–38.
- Hayes, B., Sipta'r, P., Zuraw, K., Londe, Z., 2009. Natural and unnatural constraints in Hungarian vowel harmony. *Language*, 822–863.
- Kuo, J. (2020). Evidence for base-driven alternation in Tgdaya Seediq. UCLA.
- Kuo, J. (2023). Evidence for prosodic correspondence in the vowel alternations of Tgdaya Seediq. *Phonological Data and Analysis* 5(3), p. 1-31. https://doi.org/10.3765/pda.v5art3.77
- Martin, Andrew. 2011. Grammars leak: Modeling how phonotactic generalizations interact within the grammar. Language 87(4). 751–770. https://doi.org/10.1353/lan.2011.0096.
- McCarthy, John J. & Alan S. Prince. 1995. Faithfulness and Reduplicative Identity. In Jill N. Beckman, Laura Walsh Dickey & Suzanne Urbanczyk (eds.), Papers in optimality theory, 249–384. Amherst: GLSA.
- White, James. 2017. Accounting for the learnability of saltation in phonological theory: A maximum entropy model with a p-map bias. Language 93(1). 1–36. https://doi.org/10.1353/lan.2017.0001.
- Withgott, Meg. 1983. Segmental evidence for phonological constituents, University of Texas, Austin dissertation.
- Wilson, Colin. 2006. Learning phonology with substantive bias: An experimental and computational study of velar palatalization. *Cognitive science* 30(5). 945–982. https://doi.org/10.1207/s15516709cog0000 89.
- Wilson, Colin. 2006. Learning phonology with substantive bias: An experimental and computational study of velar palatalization. *Cognitive science* 30(5). 945–982. https://doi.org/10.1207/s15516709cog0000 89.
- Yang, Hsiu-fang. 1976. The phonological structure of the paran dialect of Sediq. Bulletin of the Institute of History and Philology Academia Sinica 47(4). 611–706.
- Zuraw, K., 2000. *Patterned exceptions in phonology*. Ph.D. thesis. University of California, Los Angeles.